Self-dual Repeated Root Cyclic and Negacyclic Codes over Finite Fields

被引:0
作者
Guenda, K. [1 ]
Gulliver, T. A. [2 ]
机构
[1] Univ Sci & Technol, Fac Math USTHB, BP 32 El Alia, Algiers, Algeria
[2] Univ Victoria, Dept Elect & Comp Engn, Victoria, BC V8W 3P6, Canada
来源
2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT) | 2012年
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we investigate repeated root cyclic and negacyclic codes of length p(r)m over F(p)s with (m, p) = 1. In the case p odd, we give necessary and sufficient conditions on the existence of negacyclic self-dual codes. When m = 2m' with m' odd, we characterize the codes in terms of their generator polynomials. This provides simple conditions on the existence of self-dual negacyclic codes, and generalizes the results of Dinh [6]. We also answer an open problem concerning the number of self-dual cyclic codes given by Jia et al. [11].
引用
收藏
页数:5
相关论文
共 50 条
[31]   A Note on the Existence of Self-Dual Skew Codes over Finite Fields [J].
Boucher, Delphine .
CODES, CRYPTOLOGY, AND INFORMATION SECURITY, C2SI 2015, 2015, 9084 :228-239
[32]   SHAPE ENUMERATORS OF SELF-DUAL NRT CODES OVER FINITE FIELDS [J].
Chen, Yin ;
Zhang, Runxuan .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2024, 38 (04) :2841-2854
[33]   Dual and self-dual negacyclic codes of even length over Z2a [J].
Zhu, Shixin ;
Kai, Xiaoshan .
DISCRETE MATHEMATICS, 2009, 309 (08) :2382-2391
[34]   Generalized negacyclic codes over finite fields [J].
Jitman, Somphong ;
Ling, San ;
Tharnnukhroh, Jareena .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (01) :421-449
[35]   On LCD Negacyclic Codes over Finite Fields [J].
Pang, Binbin ;
Zhu, Shixin ;
Sun, Zhonghua .
JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2018, 31 (04) :1065-1077
[36]   A note on self-dual negacyclic codes of length ps over Fpk + uFpk [J].
Choosuwan, Parinyawat ;
Jitman, Somphong ;
Udomkavanich, Patanee .
EUROPEAN JOURNAL OF MATHEMATICS, 2020, 6 (04) :1424-1437
[37]   On LCD Negacyclic Codes over Finite Fields [J].
PANG Binbin ;
ZHU Shixin ;
SUN Zhonghua .
Journal of Systems Science & Complexity, 2018, 31 (04) :1065-1077
[38]   On LCD Negacyclic Codes over Finite Fields [J].
Binbin Pang ;
Shixin Zhu ;
Zhonghua Sun .
Journal of Systems Science and Complexity, 2018, 31 :1065-1077
[39]   Cyclic and negacyclic codes of length 2m over finite fields [J].
Zhang, Guanghui ;
Zhu, Xiaokun .
ARS COMBINATORIA, 2015, 123 :439-449
[40]   Construction of self-dual MDR cyclic codes over finite chain rings [J].
Yuan, Jian ;
Zhu, Shixin ;
Kai, Xiaoshan .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (01) :549-564