Self-dual Repeated Root Cyclic and Negacyclic Codes over Finite Fields

被引:0
|
作者
Guenda, K. [1 ]
Gulliver, T. A. [2 ]
机构
[1] Univ Sci & Technol, Fac Math USTHB, BP 32 El Alia, Algiers, Algeria
[2] Univ Victoria, Dept Elect & Comp Engn, Victoria, BC V8W 3P6, Canada
来源
2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT) | 2012年
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we investigate repeated root cyclic and negacyclic codes of length p(r)m over F(p)s with (m, p) = 1. In the case p odd, we give necessary and sufficient conditions on the existence of negacyclic self-dual codes. When m = 2m' with m' odd, we characterize the codes in terms of their generator polynomials. This provides simple conditions on the existence of self-dual negacyclic codes, and generalizes the results of Dinh [6]. We also answer an open problem concerning the number of self-dual cyclic codes given by Jia et al. [11].
引用
收藏
页数:5
相关论文
共 50 条