Assessment of RBE-Weighted Dose Models for Carbon Ion Therapy Toward Modernization of Clinical Practice at HIT: In Vitro, in Vivo, and in Patients

被引:47
作者
Mein, Stewart [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
Klein, Carmen [1 ,2 ,3 ,4 ,5 ,6 ,8 ]
Kopp, Benedikt [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
Magro, Giuseppe [9 ]
Harrabi, Semi [2 ,6 ,10 ,11 ]
Karger, Christian P. [1 ,2 ,12 ]
Haberer, Thomas [11 ]
Debus, Jurgen [2 ,5 ,6 ,7 ,10 ,11 ]
Abdollahi, Amir [1 ,2 ,3 ,4 ,5 ,6 ]
Dokic, Ivana [1 ,2 ,3 ,4 ,5 ,6 ]
Mairani, Andrea [1 ,2 ,9 ,11 ]
机构
[1] Heidelberg Univ Hosp, Natl Ctr Tumor Dis, Clin Cooperat Unit Translat Radiat Oncol, Heidelberg, Germany
[2] German Canc Res Ctr, Heidelberg, Germany
[3] Heidelberg Fac Med, Dept Radiat Oncol, Div Mol & Translat Radiat Oncol, Heidelberg, Germany
[4] Heidelberg Univ Hosp, Heidelberg Ion Beam Therapy Ctr, Heidelberg, Germany
[5] German Canc Res Ctr, German Canc Consortium Core Ctr Heidelberg, Heidelberg, Germany
[6] Heidelberg Univ, Natl Ctr Radiat Oncol, Heidelberg Inst Radiat Oncol, Clin Cooperat Unit Radiat Oncol, Heidelberg, Germany
[7] Heidelberg Univ, Fac Phys & Astron, Heidelberg, Germany
[8] Heidelberg Univ, Fac Biosci, Heidelberg, Germany
[9] Natl Ctr Ontol Hadrontherapy, Med Phys, Pavia, Italy
[10] Natl Ctr Tumor Dis, Heidelberg, Germany
[11] Heidelberg Univ Hosp, Heidelberg Ion Beam Therapy Ctr, Dept Radiat Oncol, Heidelberg, Germany
[12] German Canc Res Ctr, Dept Med Phys Radiat Oncol, Heidelberg, Germany
来源
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS | 2020年 / 108卷 / 03期
关键词
RELATIVE BIOLOGICAL EFFECTIVENESS; RAT SPINAL-CORD; LOCAL EFFECT MODEL; CELL-SURVIVAL; BEAM THERAPY; MONTE-CARLO; TREATMENT PLANS; PROTON-BEAM; RADIOTHERAPY; IRRADIATION;
D O I
10.1016/j.ijrobp.2020.05.041
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: Present-day treatment planning in carbon ion therapy is conducted with assumptions for a limited number of tissue types and models for effective dose. Here, we comprehensively assess relative biological effectiveness (RBE) in carbon ion therapy and associated models toward the modernization of current clinical practice in effective dose calculation. Methods: Using 2 human (A549, H460) and 2 mouse (B16, Renca) tumor cell lines, clonogenic cell survival assay was performed for examination of changes in RBE along the full range of clinical-like spread-out Bragg peak (SOBP) fields. Prediction power of the local effect model (LEM1 and LEM4) and the modified microdosimetric kinetic model (mMKM) was assessed. Experimentation and analysis were carried out in the frame of a multidimensional end point study for clinically relevant ranges of physical dose (D), dose-averaged linear energy transfer (LETd), and base-line photon radio-sensitivity (alpha/(beta)(x). Additionally, predictions were compared against previously reported RBE measurements in vivo and surveyed in patient cases. Results: RBE model prediction performance varied among the investigated perspectives, with mMKM prediction exhibiting superior agreement with measurements both in vitro and in vivo across the 3 investigated end points. LEM1 and LEM4 performed their best in the highest LET conditions but yielded overestimations and underestimations in low/midrange LET conditions, respectively, as demonstrated by comparison with measurements. Additionally, the analysis of patient treatment plans revealed substantial variability across the investigated models (+/- 20%-30% uncertainty), largely dependent on the selected model and absolute values for input tissue parameters alpha(x) and beta(x). Conclusion: RBE dependencies in vitro, in vivo, and in silico were investigated with respect to various clinically relevant end points in the context of tumor-specific tissue radio-sensitivity assignment and accurate RBE modeling. Discovered model trends and performances advocate upgrading current treatment planning schemes in carbon ion therapy and call for verification via clinical outcome analysis with large patient cohorts. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:779 / 791
页数:13
相关论文
共 52 条
[1]   Investigating the robustness of ion beam therapy treatment plans to uncertainties in biological treatment parameters [J].
Boehlen, T. T. ;
Brons, S. ;
Dosanjh, M. ;
Ferrari, A. ;
Fossati, P. ;
Haberer, T. ;
Patera, V. ;
Mairani, A. .
PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (23) :7983-8004
[2]   ROOT - An object oriented data analysis framework [J].
Brun, R ;
Rademakers, F .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1997, 389 (1-2) :81-86
[3]   Relative Biological Effectiveness Variation Along Monoenergetic and Modulated Bragg Peaks of a 62-MeV Therapeutic Proton Beam: A Preclinical Assessment [J].
Chaudhary, Pankaj ;
Marshall, Thomas I. ;
Perozziello, Francesca M. ;
Manti, Lorenzo ;
Currell, Frederick J. ;
Hanton, Fiona ;
McMahon, Stephen J. ;
Kavanagh, Joy N. ;
Cirrone, Giuseppe Antonio Pablo ;
Romano, Francesco ;
Prise, Kevin M. ;
Schettino, Giuseppe .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2014, 90 (01) :27-35
[4]   Sensitivity study of the microdosimetric kinetic model parameters for carbon ion radiotherapy [J].
Dahle, T. J. ;
Magro, G. ;
Ytre-Hauge, K. S. ;
Stokkevag, C. H. ;
Choi, K. ;
Mairani, A. .
PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (22)
[5]   SOI microdosimetry and modified MKM for evaluation of relative biological effectiveness for a passive proton therapy radiation field [J].
Debrot, E. ;
Tran, L. ;
Chartier, L. ;
Bolst, D. ;
Guatelli, S. ;
Vandevoorde, C. ;
de Kock, E. ;
Beukes, P. ;
Symons, J. ;
Nieto-Camero, J. ;
Prokopovich, D. A. ;
Chiriotti, S. ;
Parisi, A. ;
De Saint-Hubert, M. ;
Vanhavere, F. ;
Slabbert, J. ;
Rosenfeld, A. B. .
PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (23)
[6]   Overview of research and therapy facilities for radiobiological experimental work in particle therapy. Report from the European Particle Therapy Network radiobiology group [J].
Dosanjh, Manjit ;
Jones, Bleddyn ;
Pawelke, Joerg ;
Pruschy, Martin ;
Sorensen, Brita Singers .
RADIOTHERAPY AND ONCOLOGY, 2018, 128 (01) :14-18
[7]   Charged particles in radiation oncology [J].
Durante, Marco ;
Loeffler, Jay S. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2010, 7 (01) :37-43
[8]   Accuracy of the local effect model for the prediction of biologic effects of carbon ion beams in vitro and in vivo [J].
Elsaesser, Thilo ;
Kraemer, Michael ;
Scholz, Michael .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2008, 71 (03) :866-872
[9]   Dose prescription in carbon ion radiotherapy: a planning study to compare NIRS and LEM approaches with a clinically-oriented strategy [J].
Fossati, Piero ;
Molinelli, Silvia ;
Matsufuji, Naruhiru ;
Ciocca, Mario ;
Mirandola, Alfredo ;
Mairani, Andrea ;
Mizoe, Junetsu ;
Hasegawa, Azusa ;
Imai, Reiko ;
Kamada, Tadashi ;
Orecchia, Roberto ;
Tsujii, Hirohiko .
PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (22) :7543-7554
[10]   Sensitivity analysis of the relative biological effectiveness predicted by the local effect model [J].
Friedrich, T. ;
Gruen, R. ;
Scholz, U. ;
Elsaesser, T. ;
Durante, M. ;
Scholz, M. .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (19) :6827-6849