ASYMPTOTIC EXPANSIONS FOR THE GAUSSIAN UNITARY ENSEMBLE

被引:19
作者
Haagerup, Uffe [1 ]
Thorbjornsen, Steen [2 ]
机构
[1] Univ Copenhagen, Dept Math Sci, Univ Parken 5, DK-2100 Copenhagen O, Denmark
[2] Univ Aarhus, Dept Math Sci, Ny Munkegade 118, DK-8000 Aarhus C, Denmark
关键词
Gaussian Unitary Ensemble; expectation and covariance of traces; asymptotic expansion; Cauchy transform; RANDOM MATRICES;
D O I
10.1142/S0219025712500038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let g : R -> C be a C-infinity-function with all derivatives bounded and let tr(n) denote the normalized trace on the n x n matrices. In Ref. 3 Ercolani and McLaughlin established asymptotic expansions of the mean value E {tr(n)(g(X-n))} for a rather general class of random matrices X-n, including the Gaussian Unitary Ensemble (GUE). Using an analytical approach, we provide in the present paper an alternative proof of this asymptotic expansion in the GUE case. Specifically we derive for a GUE(n, 1/n) random matrix X-n that E {tr(n)(g(X-n))} = 1/2 pi integral-(2)(2) g(x) root 4 -x(2) dx + Sigma (k)(j=1) alpha j(g)/n(2)j + O(n(-2k-2)), where k is an arbitrary positive integer. Considered as mappings of g, we determine the coefficients alpha(j) (g), j is an element of N, as distributions (in the sense of L. Schwarts). We derive a similar asymptotic expansion for the covariance Cov{Tr-n[ f(X-n)], Tr-n[ g(X-n)]}, where f is a function of the same kind as g, and Tr-n = n tr(n). Special focus is drawn to the case where g(x) = 1/lambda-x and f(x) = 1/mu-x for lambda, mu in C\R. In this case the mean and covariance considered above correspond to, respectively, the one-and two-dimensional Cauchy (or Stieltjes) transform of the GUE(n, 1/n).
引用
收藏
页数:41
相关论文
共 18 条
[1]   On the 1/n expansion for some unitary invariant ensembles of random matrices [J].
Albeverio, S ;
Pastur, L ;
Shcherbina, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 224 (01) :271-305
[2]   Fluctuations of empirical laws of large random matrices [J].
Cabanal-Duvillard, T .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2001, 37 (03) :373-402
[3]  
Ercolani NM, 2003, INT MATH RES NOTICES, V2003, P755
[4]  
Erdelyi A., 1953, Higher transcendental functions, V2
[5]   Limit theorems for spectra of random matrices with martingale structure [J].
Goetze, F. ;
Tikhomirov, A. N. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2007, 51 (01) :42-64
[6]  
Gtze F., 2005, Cent. Eur. J. Math, V3, P666, DOI DOI 10.2478/BF02475626
[7]   A new application of random matrices:: Ext(C*red(F2)) is not a group [J].
Haagerup, U ;
Thorbjornsen, S .
ANNALS OF MATHEMATICS, 2005, 162 (02) :711-775
[8]   Random matrices with complex Gaussian entries [J].
Haagerup, U ;
Thorbjornsen, S .
EXPOSITIONES MATHEMATICAE, 2003, 21 (04) :293-337
[9]   A random matrix approach to the lack of projections in C*red(F2) [J].
Haagerup, Uffe ;
Schultz, Hanne ;
Thorbjornsen, Steen .
ADVANCES IN MATHEMATICS, 2006, 204 (01) :1-83
[10]   THE EULER CHARACTERISTIC OF THE MODULI SPACE OF CURVES [J].
HARER, J ;
ZAGIER, D .
INVENTIONES MATHEMATICAE, 1986, 85 (03) :457-485