Conformal invariance and Hojman conserved quantities of generalized Hamilton systems

被引:13
作者
Liu Chang [1 ,2 ]
Liu Shi-Xing [1 ]
Mei Feng-Xiang [2 ]
Guo Yong-Xin [1 ]
机构
[1] Liaoning Univ, Coll Phys, Shenyang 110036, Peoples R China
[2] Beijing Inst Technol, Dept Appl Mech, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
generalized Hamilton systems; conformal invariance; Hojman conserved quantities; determining equation;
D O I
10.7498/aps.57.6709
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper the conformal invariance under infinitesimal transformations of generalized Hamilton systems is studied. The necessary and sufficient conditions for the conformal invariance under infinitesimal transformations which has Lie symmetry are given. Then we get the Hojman conserved quantities from conformal invariance of generalized Hamilton systems. Finally, an illustrative example is given to verify the result.
引用
收藏
页码:6709 / 6713
页数:5
相关论文
共 33 条
  • [1] Chen XW, 2005, CHINESE PHYS, V14, P663, DOI 10.1088/1009-1963/14/4/005
  • [2] Chen XW, 2004, CHINESE PHYS, V13, P2003, DOI 10.1088/1009-1963/13/12/005
  • [3] Chen XW, 2003, CHINESE PHYS, V12, P936, DOI 10.1088/1009-1963/12/9/302
  • [4] DJUKIC S, 1975, ACTA MECH, V23, P17
  • [5] Fu JL, 2005, CHINESE PHYS, V14, P6, DOI 10.1088/1009-1963/14/1/002
  • [6] GALIULLIN AS, 1997, ANAL DYNAMICS HELMHO, P183
  • [7] Canonical formulation of nonholonomic constrained systems
    Guo, YX
    Yu, Y
    Huang, HJ
    [J]. CHINESE PHYSICS, 2001, 10 (01): : 1 - 6
  • [8] Guo YX, 2001, CHINESE PHYS, V10, P181, DOI 10.1088/1009-1963/10/3/302
  • [9] A NEW CONSERVATION LAW CONSTRUCTED WITHOUT USING EITHER LAGRANGIANS OR HAMILTONIANS
    HOJMAN, SA
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (07): : L291 - L295
  • [10] Discrete routh reduction
    Jalnapurkar, Sameer M.
    Leok, Melvin
    Marsden, Jerrold E.
    West, Matthew
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (19): : 5521 - 5544