pH/GSH-Dual-Sensitive Hollow Mesoporous Silica Nanoparticle-Based Drug Delivery System for Targeted Cancer Therapy

被引:65
作者
Chen, Zhongyin [1 ]
Wan, Lihui [1 ]
Yuan, Ye [2 ]
Kuang, Ying [3 ]
Xu, Xiangyu [1 ]
Liao, Tao [1 ]
Liu, Jia [2 ]
Xu, Zi-Qiang [1 ]
Jiang, Bingbing [1 ]
Li, Cao [1 ]
机构
[1] Hubei Univ, Hubei Key Lab Polymer Mat, Minist Educ, Key Lab Green Preparat & Applicat Funct Mat, Wuhan 430062, Peoples R China
[2] Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Res Ctr Tissue Engn & Regenerat Med, Wuhan 430022, Hubei, Peoples R China
[3] Hubei Univ Technol, Glyn O Philips Hydrocolloid Res Ctr, Wuhan 430068, Hubei, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
pH/GSH-dual-sensitivity; charge-reversal property; hollow mesoporous silica nanoparticle; controlled release; anticancer drug delivery system; CHARGE; NANOMEDICINE; STRATEGIES;
D O I
10.1021/acsbiomaterials.0c00073
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
The purpose of developing novel anticancer drug delivery systems (DDSs) is to efficiently carry and release drugs into cancer cells and minimize side effects. In this work, based on hollow mesoporous silica nanoparticle (HMSN) and the charge-reversal property, a pH/GSH-dual-sensitive DDS named DOX@HMSN-SS-PLL(cit) was reported. HMSN encapsulated DOX with high efficacy and was then covered by the "gatekeeper" beta-cyclodextrin (beta-CD) through the glutathione (GSH)-sensitive disulfide bond. Thereafter, adamantine-blocked citraconic-anhydride-functionalized poly-L-lysine (PLL(cit)-Ad) was decorated on the surface of the particles via host-guest interaction. The negatively charged carriers were stable in the neutral environment in vivo and could be effectively transported to the tumor site. The surface charge of the nanoparticles could be reversed in the weakly acidic environment, which increased the cellular uptake ability of the carriers by the cancer cells. After cellular internalization, beta-CD can be removed by breakage of the disulfide bond in the presence of a high concentration of GSH, leading to DOX release. The preparation process of the carriers was monitored. The charge-reversal capability and the controlled drug-release behavior of the carriers were also investigated. In vitro and in vivo experiments demonstrated the excellent cancer therapy effect with low side effects of the carriers. It is expected that dual-sensitive DOX@HMSN-SS-PLL(cit) could play an important role in cancer therapy.
引用
收藏
页码:3375 / 3387
页数:13
相关论文
共 34 条
[1]   Drug delivery systems: Entering the mainstream [J].
Allen, TM ;
Cullis, PR .
SCIENCE, 2004, 303 (5665) :1818-1822
[2]   Biocompatibility of Mesoporous Silica Nanoparticles [J].
Asefa, Tewodros ;
Tao, Zhimin .
CHEMICAL RESEARCH IN TOXICOLOGY, 2012, 25 (11) :2265-2284
[3]   Gated Materials for On-Command Release of Guest Molecules [J].
Aznar, Elena ;
Oroval, Mar ;
Pascual, Lluis ;
Ramon Murguia, Jose ;
Martinez-Manez, Ramon ;
Sancenon, Felix .
CHEMICAL REVIEWS, 2016, 116 (02) :561-718
[4]   The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress [J].
Chakravarthi, S ;
Jessop, CE ;
Bulleid, NJ .
EMBO REPORTS, 2006, 7 (03) :271-275
[5]   Precise nanomedicine for intelligent therapy of cancer [J].
Chen, Huabing ;
Gu, Zhanjun ;
An, Hongwei ;
Chen, Chunying ;
Chen, Jie ;
Cui, Ran ;
Chen, Siqin ;
Chen, Weihai ;
Chen, Xuesi ;
Chen, Xiaoyuan ;
Chen, Zhuo ;
Ding, Baoquan ;
Dong, Qian ;
Fan, Qin ;
Fu, Ting ;
Hou, Dayong ;
Jiang, Qiao ;
Ke, Hengte ;
Jiang, Xiqun ;
Liu, Gang ;
Li, Suping ;
Li, Tianyu ;
Liu, Zhuang ;
Nie, Guangjun ;
Ovais, Muhammad ;
Pang, Daiwen ;
Qiu, Nasha ;
Shen, Youqing ;
Tian, Huayu ;
Wang, Chao ;
Wang, Hao ;
Wang, Ziqi ;
Xu, Huaping ;
Xu, Jiang-Fei ;
Yang, Xiangliang ;
Zhu, Shuang ;
Zheng, Xianchuang ;
Zhang, Xianzheng ;
Zhao, Yanbing ;
Tan, Weihong ;
Zhang, Xi ;
Zhao, Yuliang .
SCIENCE CHINA-CHEMISTRY, 2018, 61 (12) :1503-1552
[6]   Stepwise-acid-active organic/inorganic hybrid drug delivery system for cancer therapy [J].
Chen, Hui ;
Chen, Zhongyin ;
Kuang, Ying ;
Li, Shuang ;
Zhang, Min ;
Liu, Jia ;
Sun, Zhengguang ;
Jiang, Bingbing ;
Chen, Xueqin ;
Li, Cao .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2018, 167 :407-414
[7]   Sequentially Responsive Shell-Stacked Nanoparticles for Deep Penetration into Solid Tumors [J].
Chen, Jinjin ;
Ding, Jianxun ;
Wang, Yucai ;
Cheng, Jianjun ;
Ji, Shengxiang ;
Zhuang, Xiuli ;
Chen, Xuesi .
ADVANCED MATERIALS, 2017, 29 (32)
[8]   Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications [J].
Croissant, Jonas G. ;
Fatieiev, Yevhen ;
Almalik, Abdulaziz ;
Khashab, Niveen M. .
ADVANCED HEALTHCARE MATERIALS, 2018, 7 (04)
[9]   Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine [J].
Du, Jin-Zhi ;
Li, Hong-Jun ;
Wang, Jun .
ACCOUNTS OF CHEMICAL RESEARCH, 2018, 51 (11) :2848-2856
[10]   Tumor extracellular acidity-activated nanoparticles as drug delivery systems for enhanced cancer therapy [J].
Du, Jin-Zhi ;
Mao, Cheng-Qiong ;
Yuan, You-Yong ;
Yang, Xian-Zhu ;
Wang, Jun .
BIOTECHNOLOGY ADVANCES, 2014, 32 (04) :789-803