A SHARP CORRELATION INEQUALITY WITH APPLICATION TO ALMOST SURE LOCAL LIMIT THEOREM

被引:0
|
作者
Weber, Michel [1 ]
机构
[1] Univ Strasbourg, IRMA, CNRS, F-67084 Strasbourg, France
来源
PROBABILITY AND MATHEMATICAL STATISTICS-POLAND | 2011年 / 31卷 / 01期
关键词
Correlation inequality; i.i.d. random variables; lattice distributed; Bernoulli part; square integrable; local limit theorem; almost sure version;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove a new sharp correlation inequality for sums of i.i.d. square integrable lattice distributed random variables. We also apply it to establish an almost sure version of the local limit theorem for i.i.d. square integrable random variables taking values in an arbitrary lattice. This extends a recent similar result jointly obtained with Giuliano-Antonini under a slightly stronger absolute moment assumption (of order 2 + u with u > 0). The approach used to treat the case u > 0 breaks down when u = 0. Mac-Donald's concept of the Bernoulli part of a random variable is used in a crucial way to remedy this.
引用
收藏
页码:79 / 98
页数:20
相关论文
共 50 条