A measure characterization of embedding and extension domains for Sobolev, Triebel-Lizorkin, and Besov spaces on spaces of homogeneous type

被引:9
作者
Alvarado, Ryan [1 ]
Yang, Dachun [2 ]
Yuan, Wen [2 ]
机构
[1] Amherst Coll, Dept Math & Stat, Amherst, MA 01002 USA
[2] Beijing Normal Univ, Lab Math & Complex Syst, Minist Educ China, Sch Math Sci, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Space of homogeneous type; Measure density condition; Sobolev extension; Besov-Triebel-Lizorkin extension; MEASURE DENSITY; REGULAR SUBSETS; EXTENDABILITY; RESTRICTIONS; INEQUALITY; OPERATORS;
D O I
10.1016/j.jfa.2022.109687
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, for an optimal range of the smoothness parameter s that depends (quantitatively) on the geometric makeup of the underlying space, the authors identify purely measure theoretic conditions that fully characterize embedding and extension domains for the scale of Hajlasz-Triebel- Lizorkin spaces M-p,q(s) and Hajlasz-Besov spaces N(p,q)(s )in general spaces of homogeneous type. Although stated in the context of quasi-metric spaces, these characterizations improve related work even in the metric setting. In particular, as a corollary of the main results of this article, the authors obtain a new characterization for Sobolev embedding and extension domains in the context of general doubling metric measure spaces. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:71
相关论文
共 41 条
[1]  
Alvarado R., OPTIMAL EMBEDD UNPUB
[2]   Pointwise characterization of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type [J].
Alvarado, Ryan ;
Wang, Fan ;
Yang, Dachun ;
Yuan, Wen .
STUDIA MATHEMATICA, 2023, 268 (02) :121-166
[3]   Sobolev embedding for M1,p spaces is equivalent to a lower bound of the measure [J].
Alvarado, Ryan ;
Gorka, Przemyslaw ;
Hajlasz, Piotr .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (07)
[4]   Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces Introduction [J].
Alvarado, Ryan ;
Mitrea, Marius .
HARDY SPACES ON AHLFORS-REGULAR QUASI METRIC SPACES: A SHARP THEORY, 2015, 2142 :1-31
[5]   WHITNEY-TYPE EXTENSIONS IN QUASI-METRIC SPACES [J].
Alvarado, Ryan ;
Mitrea, Irina ;
Mitrea, Marius .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (01) :59-88
[6]  
[Anonymous], 1971, Analyse harmonique non-commutative sur certains espaces homogenes
[7]  
[Anonymous], 1984, Math. Rep.
[8]   Poincare inequalities, uniform domains and extension properties for Newton-Sobolev functions in metric spaces [J].
Bjoern, Jana ;
Shanmugalingam, Nageswari .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (01) :190-208
[9]   ESTIMATES FOR SINGULAR INTEGRAL OPERATORS IN TERMS OF MAXIMAL FUNCTIONS [J].
CALDERON, AP .
STUDIA MATHEMATICA, 1972, 44 (06) :563-582
[10]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645