Genetic improvement of n-butanol tolerance in Escherichia coli by heterologous overexpression of groESL operon from Clostridium acetobutylicum

被引:21
作者
Abdelaal, Ali S. [1 ]
Ageez, Amr M. [1 ]
Abd El-Hadi, Abd El-Hadi A. [2 ]
Abdallah, Naglaa A. [1 ,2 ]
机构
[1] ARC, AGERI, Giza, Egypt
[2] Cairo Univ, Fac Agr, Dept Genet, Giza, Egypt
来源
3 BIOTECH | 2015年 / 5卷 / 04期
关键词
Heat shock protein; groESL; n-Butanol; Solvent tolerance; Biofuels; GRAM-NEGATIVE BACTERIA; SOLVENT-TOLERANCE; TRANSCRIPTIONAL PROGRAM; ALIPHATIC-ALCOHOLS; ORGANIC-SOLVENTS; MEMBRANE; STRESS; ACINETOBACTER; HYDROCARBONS; MECHANISMS;
D O I
10.1007/s13205-014-0235-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Strain tolerance to toxic metabolites remains an important issue in the production of biofuels. Here we examined the impact of overexpressing the heterologous groESL chaperone from Clostridium acetobutylicum to enhance the tolerance of Escherichia coli against several stressors. Strain tolerance was identified using strain maximum specific growth rate (mu) and strain growth after a period of solvent exposure. In comparison with control strain, the groESL overexpressing strain yielded a 27 % increase in growth under 0.8 % (v/v) butanol, a 9 % increase under 1 % (v/v) butanol, and a 64 % increase under 1.75 (g/l) acetate. Moreover, after 10 h, groESL overexpression resulted in increase in relative tolerance of 58 % compared with control strain under 0.8 % (v/v) butanol, 56 % increase under 1 % (v/v) butanol, 42 % increase under 1 % (v/v) isobutanol, 36 % increase under 4 % (v/v) ethanol, 58 % increase under 1.75 (g/l) acetate. These data demonstrate that overexpression of the groESL from C. acetobutylicum in E. coli increased tolerance to several stressors. Solvent tolerant strain of E. coli was developed to be used as a basic strain for biofuel production.
引用
收藏
页码:401 / 410
页数:10
相关论文
共 35 条
[1]   Metabolite Stress and Tolerance in the Production of Biofuels and Chemicals: Gene-Expression-Based Systems Analysis of Butanol, Butyrate, and Acetate Stresses in the Anaerobe Clostridium acetobutylicum [J].
Alsaker, Keith V. ;
Paredes, Carlos ;
Papoutsakis, Eleftherios T. .
BIOTECHNOLOGY AND BIOENGINEERING, 2010, 105 (06) :1131-1147
[2]   Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum [J].
Alsaker, KV ;
Papoutsakis, ET .
JOURNAL OF BACTERIOLOGY, 2005, 187 (20) :7103-7118
[3]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[4]  
Aono R, 1997, Tanpakushitsu Kakusan Koso, V42, P2532
[5]   Metabolic engineering of Escherichia coli for 1-butanol production [J].
Atsumi, Shota ;
Cann, Anthony F. ;
Connor, Michael R. ;
Shen, Claire R. ;
Smith, Kevin M. ;
Brynildsen, Mark P. ;
Chou, Katherine J. Y. ;
Hanai, Taizo ;
Liao, James C. .
METABOLIC ENGINEERING, 2008, 10 (06) :305-311
[6]   Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels [J].
Atsumi, Shota ;
Hanai, Taizo ;
Liao, James C. .
NATURE, 2008, 451 (7174) :86-U13
[7]   Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostfidium acetobutylicum [J].
Borden, Jacob R. ;
Papoutsakis, Eleftherios Terry .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2007, 73 (09) :3061-3068
[8]   EFFECTS OF BUTANOL ON CLOSTRIDIUM-ACETOBUTYLICUM [J].
BOWLES, LK ;
ELLEFSON, WL .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1985, 50 (05) :1165-1170
[9]   Microbial production of advanced transportation fuels in non-natural hosts [J].
Connor, Michael R. ;
Liao, James C. .
CURRENT OPINION IN BIOTECHNOLOGY, 2009, 20 (03) :307-315
[10]   Improved stress tolerance of GroESL-overproducing Lactococcus lactis and orobiotic Lactobacillus paracasei NFBC 338 [J].
Desmond, C ;
Fitzgerald, GF ;
Stanton, C ;
Ross, RP .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (10) :5929-5936