An upper bound on quantum capacity of unital quantum channels

被引:0
作者
Anshu, Anurag [1 ]
机构
[1] Natl Univ Singapore, Ctr Quantum Technol, Singapore, Singapore
来源
2017 IEEE INFORMATION THEORY WORKSHOP (ITW) | 2017年
基金
新加坡国家研究基金会;
关键词
STRONG CONVERSE; CLASSICAL CAPACITY; ENTANGLEMENT; MULTIPLICATIVITY; COMMUNICATION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We analyze the quantum capacity of a unital quantum channel, using ideas from the proof of near-optimality of Petz recovery map [Barnum and Knill 2000] and give an upper bound on the quantum capacity in terms of regularized output 2-norm of the channel. We also show that any code attempting to exceed this upper bound must incur large error in decoding, which can be viewed as a weaker version of the strong converse results for quantum capacity. As an application, we find nearly matching upper and lower bounds (up to an additive constant) on the quantum capacity of quantum expander channels. Using these techniques, we further conclude that the 'mixture of random unitaries' channels arising in the construction of quantum expanders in [Hastings 2007] show a trend in multiplicativity of output 2-norm similar to that exhibited in [Montanaro 2013] for output infinity-norm of random quantum channels.
引用
收藏
页码:214 / 218
页数:5
相关论文
共 38 条
[1]   Local tests of global entanglement and a counterexample to the generalized area law [J].
Aharonov, Dorit ;
Harrow, Aram W. ;
Landau, Zeph ;
Nagaj, Daniel ;
Szegedy, Mario ;
Vazirani, Umesh .
2014 55TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2014), 2014, :246-255
[2]  
Ambainis Andris, 2004, P RANDOM 2004
[3]   Reversing quantum dynamics with near-optimal quantum and classical fidelity [J].
Barnum, H ;
Knill, E .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (05) :2097-2106
[4]  
BEIGI S, 2016, J MATH PHYS, V57
[5]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[6]   Entanglement-assisted classical capacity of noisy quantum channels [J].
Bennett, CH ;
Shor, PW ;
Smolin, JA ;
Thapliyal, AV .
PHYSICAL REVIEW LETTERS, 1999, 83 (15) :3081-3084
[7]   Strong Converse Exponents for a Quantum Channel Discrimination Problem and Quantum-Feedback-Assisted Communication [J].
Cooney, Tom ;
Mosonyi, Milan ;
Wilde, Mark M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 344 (03) :797-829
[8]   Counterexamples to Additivity of Minimum Output p-Renyi Entropy for p Close to 0 [J].
Cubitt, Toby ;
Harrow, Aram W. ;
Leung, Debbie ;
Montanaro, Ashley ;
Winter, Andreas .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 284 (01) :281-290
[9]   The private classical capacity and quantum capacity of a quantum channel [J].
Devetak, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (01) :44-55
[10]   Quantum-channel capacity of very noisy channels [J].
DiVincenzo, DP ;
Shor, PW ;
Smolin, JA .
PHYSICAL REVIEW A, 1998, 57 (02) :830-839