A 2D NEAREST-NEIGHBOR QUANTUM ARCHITECTURE FOR FACTORING IN POLYLOGARITHMIC DEPTH

被引:0
作者
Pham, Paul [1 ]
Svore, Krysta M. [2 ]
机构
[1] Univ Washington, Quantum Theory Grp, Seattle, WA 98195 USA
[2] Microsoft Res, Quantum Architectures & Computat Grp, Redmond, WA 98052 USA
关键词
quantum architecture; prime factorization; Shor's algorithm; nearest-neighbor; carry-save addition; NETWORKS; ALGORITHM; CIRCUIT;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a 2D nearest-neighbor quantum architecture for Shor's algorithm to factor an n-bit number in O(log(3) n) depth. Our implementation uses parallel phase estimation, constant-depth fanout and teleportation, and constant-depth carry-save modular addition. We derive upper bounds on the circuit resources of our architecture under a new 2D model which allows a classical controller and parallel, communicating modules. We provide a comparison to all previous nearest-neighbor factoring implementations. Our circuit results in an exponential improvement in nearest-neighbor circuit depth at the cost of a polynomial increase in circuit size and width.
引用
收藏
页码:937 / 962
页数:26
相关论文
共 40 条
[1]  
Amy M., 2012, ARXIV12060758
[2]  
[Anonymous], 2012, ARXIV12080391
[3]  
[Anonymous], 8 C THEOR QUANT COMP
[4]  
[Anonymous], 1994, P 35 ANN S FDN COMP
[5]  
Beauregard S., 2002, ARXIVQUANTPH0205095
[6]   Efficient networks for quantum factoring [J].
Beckman, D ;
Chari, AN ;
Devabhaktuni, S ;
Preskill, J .
PHYSICAL REVIEW A, 1996, 54 (02) :1034-1063
[7]   Towards fault-tolerant quantum computing with trapped ions [J].
Benhelm, Jan ;
Kirchmair, Gerhard ;
Roos, Christian F. ;
Blatt, Rainer .
NATURE PHYSICS, 2008, 4 (06) :463-466
[8]  
Broadbent A., 2009, THEORETICAL COMPUTER, V410
[9]  
BROWNE DE, 2010, P 5 C THEOR QUANT CO
[10]  
Choi B.-S., 2010, ARXIV10085093