Clinical Decision Support System Braced with Artificial Intelligence: A Review

被引:2
作者
Prajapati, Jigna B. [1 ]
Prajapati, Bhupendra G. [2 ]
机构
[1] Ganpat Univ, Acharya Motibhai Patel Inst Comp Studies, Mehsana, Gujarat, India
[2] Ganpat Univ, Shree SK Patel Coll Pharmaceut Educ & Res, Mehsana, Gujarat, India
来源
THIRD INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND CAPSULE NETWORKS (ICIPCN 2022) | 2022年 / 514卷
关键词
CDSS (Clinical decision support system); Artificial intelligence; ES (Expert System); Machine learning; Ethics; AI;
D O I
10.1007/978-3-031-12413-6_42
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
The Healthcare sector is one of the most vibrant & crucial sectors in any development toward smart city substantivity. The health sector is enabled techier faster & faster. Artificial Intelligence (AI) is affecting the massive upliftment of all health-related services. AI is used to improve human decision-making. It performs advanced decision-making with Rules-based expert systems (ES) and machine-learning (ML). ES & ML can be combined to assist clinical releasers in their diagnosis operations for more accurate and effective clinical decisions, reduce clinical errors, and improve safety & efficacy. AI in clinical support is effective to save money to increasing the overall system's quality & performance. This paper examines a variety of studies that used Artificial Intelligence techniques in clinical decision support systems in order to define basic criteria for the usage of intelligent techniques. The use of AI in clinical systems raises ethical concerns. We also discuss the ethical, economic, legal, and societal consequences of AI in clinical support systems.
引用
收藏
页码:531 / 540
页数:10
相关论文
共 60 条
[51]  
Sundhar K.A., ARTIF INTELL, P165
[52]  
Sungheetha A., 2020, J. Soft Comput. Paradigm, V2, P168, DOI [10.36548/jscp.2020.3.004, DOI 10.36548/JSCP.2020.3.004]
[53]  
Swetlitz I., 2018, STAT
[54]   Evaluating the perceived utility of an artificial intelligence-powered clinical decision support system for depression treatment using a simulation center [J].
Tanguay-Sela, Myriam ;
Benrimoh, David ;
Popescu, Christina ;
Perez, Tamara ;
Rollins, Colleen ;
Snook, Emily ;
Lundrigan, Eryn ;
Armstrong, Caitrin ;
Perlman, Kelly ;
Fratila, Robert ;
Mehltretter, Joseph ;
Israel, Sonia ;
Champagne, Monique ;
Williams, Jerome ;
Simard, Jade ;
Parikh, Sagar, V ;
Karp, Jordan F. ;
Heller, Katherine ;
Linnaranta, Outi ;
Cardona, Liliana Gomez ;
Turecki, Gustavo ;
Margolese, Howard C. .
PSYCHIATRY RESEARCH, 2022, 308
[55]   Association between workarounds and medication administration errors in bar-code-assisted medication administration in hospitals [J].
van der Veen, Willem ;
van den Bemt, Patricia M. L. A. ;
Wouters, Hans ;
Bates, David W. ;
Twisk, Jos W. R. ;
de Gier, Johan J. ;
Taxis, Katja .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2018, 25 (04) :385-392
[56]  
Vogel Stefan, 2022, Stud Health Technol Inform, V289, P224, DOI 10.3233/SHTI210900
[57]   A multi-approaches-guided genetic algorithm with application to operon prediction [J].
Wang, Shuqin ;
Wang, Yan ;
Du, Wei ;
Sun, Fangxun ;
Wang, Xiumei ;
Zhou, Chunguang ;
Liang, Yanchun .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2007, 41 (02) :151-159
[58]  
Wang X., 2021, E3S WEB C, V248, DOI 10.1051/e3sconf/202124803025
[59]  
Xiong Q., 2021, 2021 INT C WIRELESS, P532, DOI [10.1109/ICWCSG53609.2021.00113, DOI 10.1109/ICWCSG53609.2021.00113]
[60]   Artificial intelligence in healthcare [J].
Yu, Kun-Hsing ;
Beam, Andrew L. ;
Kohane, Isaac S. .
NATURE BIOMEDICAL ENGINEERING, 2018, 2 (10) :719-731