Mean curvature flow with surgeries of two-convex hypersurfaces

被引:104
作者
Huisken, Gerhard [1 ]
Sinestrari, Carlo [2 ]
机构
[1] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Golm, Germany
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
CONVEX SURFACES; POSITIVE CURVATURE; SINGULARITIES; SETS; SUBMANIFOLDS; MANIFOLDS;
D O I
10.1007/s00222-008-0148-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:137 / 221
页数:85
相关论文
共 30 条
[1]   Mean curvature flow through singularities for surfaces of rotation [J].
Altschuler, S ;
Angenent, SB ;
Giga, Y .
JOURNAL OF GEOMETRIC ANALYSIS, 1995, 5 (03) :293-358
[2]  
Angenent SB, 1997, J REINE ANGEW MATH, V482, P15
[3]  
[Anonymous], 1976, DIFFERENTIAL TOPOLOG
[4]  
Brakke KA., 1978, MOTION SURFACE ITS M
[5]  
CHEN YG, 1991, J DIFFER GEOM, V33, P749
[6]   Singularity structure in mean curvature flow of mean-convex sets [J].
Colding, TH ;
Kleiner, B .
ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 9 :121-124
[7]   INTERIOR ESTIMATES FOR HYPERSURFACES MOVING BY MEAN-CURVATURE [J].
ECKER, K ;
HUISKEN, G .
INVENTIONES MATHEMATICAE, 1991, 105 (03) :547-569
[8]  
Ecker K., 2004, REGULARITY THEORY ME
[9]   MOTION OF LEVEL SETS BY MEAN-CURVATURE .1. [J].
EVANS, LC ;
SPRUCK, J .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1991, 33 (03) :635-681
[10]   Minimal disks and two-convex hypersurfaces [J].
Fraser, AM .
AMERICAN JOURNAL OF MATHEMATICS, 2002, 124 (03) :483-493