Cache-oblivious selection in sorted X+Y matrices

被引:1
作者
de Berg, Mark [1 ]
Thite, Shripad [2 ]
机构
[1] Tech Univ Eindhoven, Dept Comp Sci, Eindhoven, Netherlands
[2] CALTECH, Ctr Math Informat IST, Pasadena, CA 91125 USA
关键词
Algorithms; Cache-oblivious algorithms; Matrix selection;
D O I
10.1016/j.ipl.2008.09.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let X[0 . . n - 1] and Y[0 . . m - 1] be two sorted arrays, and define the m x n matrix A by A[j][i] = X[i] + Y[j]. Frederickson and Johnson [G.N. Frederickson, D.B. Johnson. Generalized selection and ranking: Sorted matrices, SIAM J. Computing 13 (1984) 14-30] gave an efficient algorithm for selecting the kill smallest element from A. We show how to make this algorithm IO-efficient. Our cache-oblivious algorithm performs O ((m + n)/ B) IOs, where B is the block size of memory transfers. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:87 / 92
页数:6
相关论文
共 13 条
[1]   Efficient algorithms for geometric optimization [J].
Agarwal, PK ;
Sharir, M .
ACM COMPUTING SURVEYS, 1998, 30 (04) :412-458
[2]   THE INPUT OUTPUT COMPLEXITY OF SORTING AND RELATED PROBLEMS [J].
AGGARWAL, A ;
VITTER, JS .
COMMUNICATIONS OF THE ACM, 1988, 31 (09) :1116-1127
[3]  
[Anonymous], P 40 ANN S FDN COMP
[4]  
Blum M., 1973, Journal of Computer and System Sciences, V7, P448, DOI 10.1016/S0022-0000(73)80033-9
[5]  
Cormen T. H., 2001, Introduction to Algorithms, V2nd
[6]   Computing the maximum overlap of two convex polygons under translations [J].
de Berg, M ;
Cheong, O ;
Devillers, O ;
van Kreveld, M ;
Teillaud, M .
THEORY OF COMPUTING SYSTEMS, 1998, 31 (05) :613-628
[7]  
EFRAT A, 1996, P 7 INT S ALG COMP, P115
[8]   CORRECTION [J].
FREDERICKSON, GN .
SIAM JOURNAL ON COMPUTING, 1990, 19 (01) :205-206
[9]   GENERALIZED SELECTION AND RANKING - SORTED MATRICES [J].
FREDERICKSON, GN ;
JOHNSON, DB .
SIAM JOURNAL ON COMPUTING, 1984, 13 (01) :14-30
[10]  
GOLZMAN A, 1995, LNCS, V955, P26