FAST AND ACCURATE COMPUTATION OF GAUSS-LEGENDRE AND GAUSS-JACOBI QUADRATURE NODES AND WEIGHTS

被引:138
作者
Hale, Nicholas [1 ]
Townsend, Alex [1 ]
机构
[1] Math Inst, Oxford OX1 3LB, England
关键词
quadrature; Gauss-Legendre; Gauss-Jacobi; asymptotic expansion; CONVERGENCE-RATES; FAST ALGORITHM; POLYNOMIALS; ZEROS; APPROXIMATIONS; ASYMPTOTICS; SERIES;
D O I
10.1137/120889873
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An efficient algorithm for the accurate computation of Gauss-Legendre and Gauss-Jacobi quadrature nodes and weights is presented. The algorithm is based on Newton's root-finding method with initial guesses and function evaluations computed via asymptotic formulae. The n-point quadrature rule is computed in O(n) operations to an accuracy of essentially double precision for any n >= 100.
引用
收藏
页码:A652 / A674
页数:23
相关论文
共 54 条
  • [1] Abramowitz M., 1964, Handbook of Mathematical Functions
  • [2] A FAST ALGORITHM FOR THE EVALUATION OF LEGENDRE EXPANSIONS
    ALPERT, BK
    ROKHLIN, V
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1991, 12 (01): : 158 - 179
  • [3] [Anonymous], 2012, NAG FORTR LIB VERS 2
  • [4] [Anonymous], J REINE ANGEW MATH
  • [5] [Anonymous], 1981, The Influence of HisWork onMathematics and the Physical Sciences
  • [6] [Anonymous], 1878, J. Math. Pures Appl
  • [7] A uniform asymptotic expansion for Jacobi polynomials via uniform treatment of Darboux's method
    Bai, Xiao-Xi
    Zhao, Yu-Qiu
    [J]. JOURNAL OF APPROXIMATION THEORY, 2007, 148 (01) : 1 - 11
  • [8] A comparison of three high-precision quadrature schemes
    Bailey, DH
    Jeyabalan, K
    Li, XS
    [J]. EXPERIMENTAL MATHEMATICS, 2005, 14 (03) : 317 - 329
  • [9] BARATELLA P, 1988, LECT NOTES MATH, V1329, P203
  • [10] Barycentric Lagrange interpolation
    Berrut, JP
    Trefethen, LN
    [J]. SIAM REVIEW, 2004, 46 (03) : 501 - 517