Heegner cycles and higher weight specializations of big Heegner points

被引:12
作者
Castella, Francesc [1 ]
机构
[1] McGill Univ, Dept Math & Stat, Montreal, PQ, Canada
关键词
SEMI-STABLE REDUCTION; CRYSTALLINE COHOMOLOGY; DERIVATIVES; FAMILIES;
D O I
10.1007/s00208-012-0871-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be a -ordinary Hida family of tame level , and let be an imaginary quadratic field satisfying the Heegner hypothesis relative to . By taking a compatible sequence of twisted Kummer images of CM points over the tower of modular curves of level , Howard has constructed a canonical class in the cohomology of a self-dual twist of the big Galois representation associated to . If a -ordinary eigenform on of weight is the specialization of at , one thus obtains from a higher weight generalization of the Kummer images of Heegner points. In this paper we relate the classes to the ,tale Abel-Jacobi images of Heegner cycles when splits in .
引用
收藏
页码:1247 / 1282
页数:36
相关论文
共 35 条
[1]  
[Anonymous], 1985, ANN MATH STUDIES
[2]  
Bloch S., 1990, Progr. Math., VI, P333
[3]  
Breuil C, 2010, ASTERISQUE, P255
[4]   Analytic continuation of overconvergent eigenforms [J].
Buzzard, K .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (01) :29-55
[5]  
Coleman R. F., 1997, J THEOR NOMBR BORDX, V9, P395
[6]   P-adic Banach spaces and families of modular forms [J].
Coleman, RF .
INVENTIONES MATHEMATICAE, 1997, 127 (03) :417-479
[7]   Classical and overconvergent modular forms [J].
Coleman, RF .
INVENTIONES MATHEMATICAE, 1996, 124 (1-3) :215-241
[8]  
COLEMAN RF, 1989, COMPOS MATH, V72, P205
[9]  
Coleman Robert F., 1994, CONT MATH, V165, P21, DOI DOI 10.1090/CONM/165/01602
[10]  
Faltings G, 2002, ASTERISQUE, P185