Infinitely many sign-changing solutions for p-Laplacian equation involving the critical Sobolev exponent

被引:6
作者
Wu, Yuanze [1 ]
Huang, Yisheng [1 ]
机构
[1] Soochow Univ, Dept Math, Suzhou 215006, Jiangsu, Peoples R China
关键词
NONLINEAR ELLIPTIC PROBLEMS; POSITIVE SOLUTIONS; MULTIPLICITY;
D O I
10.1186/1687-2770-2013-149
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following problem: {-Delta(p)u = lambda vertical bar u vertical bar(p2)u + vertical bar u vertical bar(p*) (2)u in Omega, u=0 on partial derivative Omega, where Omega subset of R-N is a smooth bounded domain, 1 < p < N, -Delta(p)u = div(vertical bar del u vertical bar(p-2)del u, is the p-Laplacian, p* = pN/(N-p) is the critical Sobolev exponent and lambda > 0 is a parameter. By establishing a new deformation lemma, we show that if N > p(2)+p, then for each lambda=0, this problem has infinitely many sign-changing solutions, which extends the results obtained in (Cao et al. in J. Funct. Anal. 262: 2861-2902, 2012; Schechter and Zou in Arch. Ration. Mech. Anal. 197: 337-356, 2010).
引用
收藏
页数:10
相关论文
共 19 条
[1]  
Allegretto W, 1998, NONLINEAR ANAL-THEOR, V32, P819
[2]   Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinearity [J].
Alves, CO ;
Ding, YH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (02) :508-521
[3]  
[Anonymous], 1986, CBMS REG C SER MATH
[4]   Nodal solutions of a p-Laplacian equation [J].
Bartsch, T ;
Liu, ZL ;
Weth, T .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 :129-152
[5]   On a superlinear elliptic p-Laplacian equation [J].
Bartsch, T ;
Liu, ZL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 198 (01) :149-175
[6]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[7]   Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth [J].
Cao, Daomin ;
Peng, Shuangjie ;
Yan, Shusen .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (06) :2861-2902
[8]  
CERAMI G, 1984, ANN I H POINCARE-AN, V1, P341
[9]   Multiple positive solutions for a critical quasilinear equation via Morse theory [J].
Cingolani, Silvia ;
Vannella, Giuseppina .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (02) :397-413
[10]  
Clapp M, 2005, ADV DIFFERENTIAL EQU, V10, P463