Overexpression of O-methyltransferase leads to improved vanillin production in baker's yeast only when complemented with model-guided network engineering

被引:35
作者
Brochado, Ana Rita [1 ,2 ]
Patil, Kiran R. [2 ]
机构
[1] Tech Univ Denmark, Ctr Microbial Biotechnol, Dept Syst Biol, DK-2800 Lyngby, Denmark
[2] EMBL Heidelberg, Struct & Computat Biol Unit, European Mol Biol Lab, D-69117 Heidelberg, Germany
关键词
vanillin; Saccharomyces cerevisiae; pathway engineering; ESCHERICHIA-COLI; CLONING; ACID;
D O I
10.1002/bit.24731
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Overproduction of a desired metabolite is often achieved via manipulation of the pathway directly leading to the product or through engineering of distant nodes within the metabolic network. Empirical examples illustrating the combined effect of these local and global strategies have been so far limited in eukaryotic systems. In this study, we compared the effects of overexpressing a key gene in de novo vanillin biosynthesis (coding for O-methyltransferase, hsOMT) in two yeast strains, with and without model-guided global network modifications. Overexpression of hsOMT resulted in increased vanillin production only in the strain with model-guided modifications, exemplifying advantage of using a global strategy prior to local pathway manipulation. Biotechnol. Bioeng. 2013; 110: 656659. (c) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:656 / 659
页数:4
相关论文
共 18 条
[1]   Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering [J].
Asadollahi, Mohammad A. ;
Maury, Jerome ;
Patil, Kiran Raosaheb ;
Schalk, Michel ;
Clark, Anthony ;
Nielsen, Jens .
METABOLIC ENGINEERING, 2009, 11 (06) :328-334
[2]   Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels [J].
Atsumi, Shota ;
Hanai, Taizo ;
Liao, James C. .
NATURE, 2008, 451 (7174) :86-U13
[3]   Improved vanillin production in baker's yeast through in silico design [J].
Brochado, Ana Rita ;
Matos, Claudia ;
Moller, Birger L. ;
Hansen, Jorgen ;
Mortensen, Uffe H. ;
Patil, Kiran Raosaheb .
MICROBIAL CELL FACTORIES, 2010, 9
[4]   Cloning-free PCR-based allele replacement methods [J].
Erdeniz, N ;
Mortensen, UH ;
Rothstein, R .
GENOME RESEARCH, 1997, 7 (12) :1174-1183
[5]   Improving lycopene production in Escherichia coli by engineering metabolic control [J].
Farmer, WR ;
Liao, JC .
NATURE BIOTECHNOLOGY, 2000, 18 (05) :533-537
[6]   Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae [J].
Flagfeldt, Dongmei Bai ;
Siewers, Verena ;
Huang, Le ;
Nielsen, Jens .
YEAST, 2009, 26 (10) :545-551
[7]   De Novo Biosynthesis of Vanillin in Fission Yeast (Schizosaccharomyces pombe) and Baker's Yeast (Saccharomyces cerevisiae) [J].
Hansen, Esben H. ;
Moller, Birger Lindberg ;
Kock, Gertrud R. ;
Buenner, Camilla M. ;
Kristensen, Charlotte ;
Jensen, Ole R. ;
Okkels, Finn T. ;
Olsen, Carl E. ;
Motawia, Mohammed S. ;
Hansen, Jorgen .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2009, 75 (09) :2765-2774
[8]   Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments [J].
Nour-Eldin, Hussam H. ;
Hansen, Bjarne G. ;
Norholm, Morten H. H. ;
Jensen, Jacob K. ;
Halkier, Barbara A. .
NUCLEIC ACIDS RESEARCH, 2006, 34 (18)
[9]   Evolutionary programming as a platform for in silico metabolic engineering -: art. no. 308 [J].
Patil, KR ;
Rocha, I ;
Förster, J ;
Nielsen, J .
BMC BIOINFORMATICS, 2005, 6 (1)
[10]   Biotechnological production of vanillin [J].
Priefert, H ;
Rabenhorst, J ;
Steinbüchel, A .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2001, 56 (3-4) :296-314