An algorithm for computing a Pade approximant with minimal degree denominator

被引:17
作者
Ibryaeva, O. L. [1 ]
Adukov, V. M. [1 ]
机构
[1] S Ural State Univ, Chelyabinsk, Russia
关键词
Pade approximant; Toeplitz matrix; Pade-Laplace method; Froissart doublets;
D O I
10.1016/j.cam.2012.06.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new definition of a reduced Pade approximant and an algorithm for its computation are proposed. Our approach is based on the investigation of the kernel structure of the Toeplitz matrix. It is shown that the reduced Pade approximant always has nice properties which the classical Fade approximant possesses only in the normal case. The new algorithm allows us to avoid the appearance of Froissart doublets induced by computer roundoff in the non-normal Bade table. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:529 / 541
页数:13
相关论文
共 16 条
[1]   Generalized inversion of block Toeplitz matrices [J].
Adukov, VM .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 274 :85-124
[2]   From numerical quadrature to Pade approximation [J].
Brezinski, C. .
APPLIED NUMERICAL MATHEMATICS, 2010, 60 (12) :1209-1220
[3]   RECURSIVE ALGORITHMS FOR NONNORMAL PADE-TABLES [J].
BULTHEEL, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1980, 39 (01) :106-118
[4]  
Claverie P., 1989, Computer Physics Reports, V9, P247, DOI [10.1016/ 0167-7977(89)90025-7, DOI 10.1016/0167-7977(89)90025-7]
[6]  
Geddes K. O., 1979, ACM Transactions on Mathematical Software, V5, P218, DOI 10.1145/355826.355835
[7]   Froissart doublets in Pade approximation in the case of polynomial noise [J].
Gilewicz, J ;
Kryakin, Y .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 153 (1-2) :235-242
[8]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[9]  
Golub G.H., 1976, RANK DEGENERACY LEAS
[10]   PADE TABLE AND ITS RELATION TO CERTAIN ALGORITHMS OF NUMERICAL-ANALYSIS [J].
GRAGG, WB .
SIAM REVIEW, 1972, 14 (01) :1-&