Dual Equation and Inverse Problem for an Indefinite Sturm-Liouville Problem with m Turning Points of Even Order

被引:1
作者
Marasi, Hamidreza [1 ]
Akbarfam, Aliasghar Jodayree [2 ]
机构
[1] Univ Bonab, Bonab, Iran
[2] Univ Tabriz, Tabriz, Iran
关键词
turning point; Sturm-Liouville problem; indefinite problem; dual equation; inverse problem; COMPLEX PARAMETER; NUMBER;
D O I
10.3846/13926292.2012.732972
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper the differential equation y '' +(rho(2)phi(2)(x) - q(x))y = 0 is considered on a finite interval I, say I = [0, 1], where q is a positive sufficiently smooth function and rho(2) is a real parameter. Also, [0, 1] contains a finite number of zeros of phi(2), the so called turning points, 0 < x(1) < x(2) < ... < x(m) < 1. First we obtain the infinite product representation of the solution. The product representation, satisfies in the original equation. As a result the associated dual equation is derived and then we proceed with the solution of the inverse problem.
引用
收藏
页码:618 / 629
页数:12
相关论文
共 22 条
[1]  
Akbarfam A. Jodayree, 1999, INT J APPL MATH, V1, P849
[2]  
Akbarfam A. Jodayree, 1989, THESIS U OTTAWA CANA
[3]   Duality for an indefinite inverse Sturm-Liouville problem [J].
Akbarfam, AJ ;
Mingarelli, AB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 312 (02) :435-463
[4]   Higher order asymptotic distribution of the eigenvalues of nondefinite Sturm-Liouville problems with one turning point [J].
Akbarfam, AJ ;
Mingarelli, AB .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 149 (02) :423-437
[5]  
[Anonymous], 1985, LINEAR TURNING POINT
[6]   CONNECTION FORMULAS FOR 2ND-ORDER DIFFERENTIAL-EQUATIONS WITH A COMPLEX PARAMETER AND HAVING AN ARBITRARY NUMBER OF TURNING-POINTS [J].
EBERHARD, W ;
FREILING, G ;
SCHNEIDER, A .
MATHEMATISCHE NACHRICHTEN, 1994, 165 :205-229
[7]  
Eberhard W., 1992, RESULTS MATH, V21, P24
[8]  
Freiling G., 2001, INVERSE STURM LIOUVI
[9]  
Freiling G., 1997, INVERSE PROBL, V13, P1247
[10]  
GOLDENVEIZER AL, 1979, FREE VIBRATION THIN