Effects of parallel electron dynamics on plasma blob transport

被引:51
作者
Angus, Justin R. [1 ]
Krasheninnikov, Sergei I. [1 ]
Umansky, Maxim V. [2 ]
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
SCRAPE-OFF-LAYER; CONVECTIVE-TRANSPORT; LINEAR DEVICES; DIII-D; TOKAMAKS;
D O I
10.1063/1.4747619
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The 3D effects on sheath connected plasma blobs that result from parallel electron dynamics are studied by allowing for the variation of blob density and potential along the magnetic field line and using collisional Ohm's law to model the parallel current density. The parallel current density from linear sheath theory, typically used in the 2D model, is implemented as parallel boundary conditions. This model includes electrostatic 3D effects, such as resistive drift waves and blob spinning, while retaining all of the fundamental 2D physics of sheath connected plasma blobs. If the growth time of unstable drift waves is comparable to the 2D advection time scale of the blob, then the blob's density gradient will be depleted resulting in a much more diffusive blob with little radial motion. Furthermore, blob profiles that are initially varying along the field line drive the potential to a Boltzmann relation that spins the blob and thereby acts as an addition sink of the 2D potential. Basic dimensionless parameters are presented to estimate the relative importance of these two 3D effects. The deviation of blob dynamics from that predicted by 2D theory in the appropriate limits of these parameters is demonstrated by a direct comparison of 2D and 3D seeded blob simulations. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4747619]
引用
收藏
页数:14
相关论文
共 24 条
[1]   Drift wave dispersion relation for arbitrarily collisional plasma [J].
Angus, Justin R. ;
Krasheninnikov, Sergei I. .
PHYSICS OF PLASMAS, 2012, 19 (05)
[2]   Effect of Drift Waves on Plasma Blob Dynamics [J].
Angus, Justin R. ;
Umansky, Maxim V. ;
Krasheninnikov, Sergei I. .
PHYSICAL REVIEW LETTERS, 2012, 108 (21)
[3]   Convective transport in the scrape-off layer of tokamaks [J].
Aydemir, AY .
PHYSICS OF PLASMAS, 2005, 12 (06) :1-11
[4]  
Bellan P. M., 2006, FUNDAMENTALS PLASMA, P297
[5]   Transport by intermittent convection in the boundary of the DIII-D tokamak [J].
Boedo, JA ;
Rudakov, D ;
Moyer, R ;
Krasheninnikov, S ;
Whyte, D ;
McKee, G ;
Tynan, G ;
Schaffer, M ;
Stangeby, P ;
West, P ;
Allen, S ;
Evans, T ;
Fonck, R ;
Hollmann, E ;
Leonard, A ;
Mahdavi, A ;
Porter, G ;
Tillack, M ;
Antar, G .
PHYSICS OF PLASMAS, 2001, 8 (11) :4826-4833
[6]   Convective transport by intermittent blob-filaments: Comparison of theory and experiment [J].
D'Ippolito, D. A. ;
Myra, J. R. ;
Zweben, S. J. .
PHYSICS OF PLASMAS, 2011, 18 (06)
[7]   Rotational stability of plasma blobs [J].
D'Ippolito, DA ;
Myra, JR ;
Russell, DA ;
Yu, GQ .
PHYSICS OF PLASMAS, 2004, 11 (10) :4603-4609
[8]   BOUT++: A framework for parallel plasma fluid simulations [J].
Dudson, B. D. ;
Umansky, M. V. ;
Xu, X. Q. ;
Snyder, P. B. ;
Wilson, H. R. .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (09) :1467-1480
[9]   Experimental observation of the blob-generation mechanism from interchange waves in a plasma [J].
Furno, I. ;
Labit, B. ;
Podesta, M. ;
Fasoli, A. ;
Mueller, S. H. ;
Poli, F. M. ;
Ricci, P. ;
Theiler, C. ;
Brunner, S. ;
Diallo, A. ;
Graves, J. .
PHYSICAL REVIEW LETTERS, 2008, 100 (05)
[10]   Radial interchange motions of plasma filaments [J].
Garcia, O. E. ;
Bian, N. H. ;
Fundamenski, W. .
PHYSICS OF PLASMAS, 2006, 13 (08)