Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance

被引:261
作者
Tuan Anh Ngo [1 ]
Lu, Zhi [2 ]
Carneiro, Gustavo [3 ]
机构
[1] Vietnam Natl Univ Agr, Hanoi, Vietnam
[2] Univ South Australia, Adelaide, SA 5001, Australia
[3] Univ Adelaide, Australian Ctr Visual Technol, Adelaide, SA 5005, Australia
基金
澳大利亚研究理事会;
关键词
Deep learning; Level set method; Segmentation of the left ventricle of the heart; Cardiac cine magnetic resonance; ARCHITECTURES; TRACKING; MODELS;
D O I
10.1016/j.media.2016.05.009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a new methodology that combines deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance (MR) data. This combination is relevant for segmentation problems, where the visual object of interest presents large shape and appearance variations, but the annotated training set is small, which is the case for various medical image analysis applications, including the one considered in this paper. In particular, level set methods are based on shape and appearance terms that use small training sets, but present limitations for modelling the visual object variations. Deep learning methods can model such variations using relatively small amounts of annotated training, but they often need to be regularised to produce good generalisation. Therefore, the combination of these methods brings together the advantages of both approaches, producing a methodology that needs small training sets and produces accurate segmentation results. We test our methodology on the MICCAI 2009 left ventricle segmentation challenge database (containing 15 sequences for training, 15 for validation and 15 for testing), where our approach achieves the most accurate results in the semi-automated problem and state-of-the-art results for the fully automated challenge. Crown Copyright (C) 2016 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:159 / 171
页数:13
相关论文
共 50 条
  • [31] Multiphase B-spline level set and incremental shape priors with applications to segmentation and tracking of left ventricle in cardiac MR images
    Van-Truong Pham
    Thi-Thao Tran
    Shyu, Kuo-Kai
    Lin, Lian-Yu
    Wang, Yung-Hung
    Lo, Men-Tzung
    [J]. MACHINE VISION AND APPLICATIONS, 2014, 25 (08) : 1967 - 1987
  • [32] The Segmentation of the Left Ventricle of the Heart From Ultrasound Data Using Deep Learning Architectures and Derivative-Based Search Methods
    Carneiro, Gustavo
    Nascimento, Jacinto C.
    Freitas, Antonio
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (03) : 968 - 982
  • [33] Fully-automated deep-learning segmentation of pediatric cardiovascular magnetic resonance of patients with complex congenital heart diseases
    Karimi-Bidhendi, Saeed
    Arafati, Arghavan
    Cheng, Andrew L.
    Wu, Yilei
    Kheradvar, Arash
    Jafarkhani, Hamid
    [J]. JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2020, 22 (01)
  • [34] An Image-Based Comprehensive Approach for Automatic Segmentation of Left Ventricle from Cardiac Short Axis Cine MR Images
    Huang, Su
    Liu, Jimin
    Lee, Looi Chow
    Venkatesh, Sudhakar K.
    Teo, Lynette Li San
    Au, Christopher
    Nowinski, Wieslaw L.
    [J]. JOURNAL OF DIGITAL IMAGING, 2011, 24 (04) : 598 - 608
  • [35] MITEA: A dataset for machine learning segmentation of the left ventricle in 3D echocardiography using subject-specific labels from cardiac magnetic resonance imaging
    Zhao, Debbie
    Ferdian, Edward
    Talou, Gonzalo D. Maso D.
    Quill, Gina M.
    Gilbert, Kathleen
    Wang, Vicky Y.
    Gamage, Thiranja P. Babarenda P.
    Pedrosa, Joao
    D'hooge, Jan
    Sutton, Timothy M.
    Lowe, Boris S.
    Legget, Malcolm E.
    Ruygrok, Peter N.
    Doughty, Robert N.
    Camara, Oscar
    Young, Alistair A.
    Nash, Martyn P.
    [J]. FRONTIERS IN CARDIOVASCULAR MEDICINE, 2023, 9
  • [36] Deep learning to estimate cardiac magnetic resonance-derived left ventricular mass
    Khurshid, Shaan
    Friedman, Samuel Freesun
    Pirruccello, James P.
    Di Achille, Paolo
    Diamant, Nathaniel
    Anderson, Christopher D.
    Ellinor, Patrick T.
    Batra, Puneet
    Ho, Jennifer E.
    Philippakis, Anthony A.
    Lubitz, Steven A.
    [J]. CARDIOVASCULAR DIGITAL HEALTH JOURNAL, 2021, 2 (02): : 109 - 117
  • [37] Automated diagnosis of cardiovascular diseases from cardiac magnetic resonance imaging using deep learning models: A review
    Jafari, Mahboobeh
    Shoeibi, Afshin
    Khodatars, Marjane
    Ghassemi, Navid
    Moridian, Parisa
    Alizadehsani, Roohallah
    Khosravi, Abbas
    Ling, Sai Ho
    Delfan, Niloufar
    Zhang, Yu-Dong
    Wang, Shui-Hua
    Gorriz, Juan M.
    Alinejad-Rokny, Hamid
    Acharya, U. Rajendra
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 160
  • [38] Left Ventricle Detection from Cardiac Magnetic Resonance Relaxometry Images Using Visual Transformer
    De Santi, Lisa Anita
    Meloni, Antonella
    Santarelli, Maria Filomena
    Pistoia, Laura
    Spasiano, Anna
    Casini, Tommaso
    Putti, Maria Caterina
    Cuccia, Liana
    Cademartiri, Filippo
    Positano, Vincenzo
    [J]. SENSORS, 2023, 23 (06)
  • [39] Deep learning to diagnose cardiac amyloidosis from cardiovascular magnetic resonance
    Nicola Martini
    Alberto Aimo
    Andrea Barison
    Daniele Della Latta
    Giuseppe Vergaro
    Giovanni Donato Aquaro
    Andrea Ripoli
    Michele Emdin
    Dante Chiappino
    [J]. Journal of Cardiovascular Magnetic Resonance, 22
  • [40] Deep learning to diagnose cardiac amyloidosis from cardiovascular magnetic resonance
    Martini, Nicola
    Aimo, Alberto
    Barison, Andrea
    Della Latta, Daniele
    Vergaro, Giuseppe
    Aquaro, Giovanni Donato
    Ripoli, Andrea
    Emdin, Michele
    Chiappino, Dante
    [J]. JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2020, 22 (01)