Estimation of a disease model based on a discrete time Markov model using secondary data with transitions based on multi-dimensional tables

被引:1
作者
Barhak, Jacob [1 ,2 ]
机构
[1] Univ Michigan, NSF Engn Res Ctr, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dev Dis Modeling Tools Michigan Model Diabet, Ann Arbor, MI 48109 USA
来源
SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL | 2016年 / 92卷 / 11期
关键词
Diabetes; disease modeling; chronic disease; parameter estimation; stratification; Markov model; Maximum Likelihood Estimation; tools and technology; modeling and simulation environments; theory and methodology; CORONARY-HEART-DISEASE; LONG-TERM PROGNOSIS; MYOCARDIAL-INFARCTION; DIABETES-MELLITUS; IMPACT; ARCHIMEDES; MORTALITY;
D O I
10.1177/0037549716673729
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The progression of a disease may be affected by many risk factors, such as gender, age, and current disease state. Such information is collected and made publically available by published clinical studies, yet combining this information into a disease model remains a challenge. This paper extends the previously published maximum likelihood estimation technique to estimate model parameters from indirect secondary data. Such information is available in the scientific literature so the modeler can access more data when estimating model parameters. The extension to the estimation procedure allows model transitions that depend on different sets of covariates for which secondary data are available. This extension uses a Markov model with transition probabilities stored in multi-dimensional tables accessed by covariate values. The paper uses a set of cases, including a case of cardiovascular disease in diabetes. The cases demonstrate the proposed method with various model variations. To help cope with model multiplicity, a selection method is demonstrated for picking a preferred model according to likelihood and structure criteria.
引用
收藏
页码:957 / 979
页数:23
相关论文
共 28 条
[21]   Impact of diabetes on mortality after the first myocardial infarction [J].
Miettinen, H ;
Lehto, S ;
Salomaa, V ;
Mähönen, M ;
Niemelä, M ;
Haffner, SM ;
Pyörälä, K ;
Tuomilehto, J .
DIABETES CARE, 1998, 21 (01) :69-75
[22]   Computer modeling of diabetes and its complications -: A report on the Fourth Mount Hood Challenge Meeting [J].
Palmer, Andrew J. ;
Roze, Stephane ;
Valentine, William J. ;
McEwan, Philip ;
Gillett, Michael ;
Holmes, Michael ;
Clarke, Philip ;
Stevens, Richard ;
Gray, Alastair M. ;
Coleman, Ruth ;
Sorensen, Stephen ;
Mueller, Elvira ;
Walzer, Stefan ;
Eddy, David M. ;
Kahn, Richard ;
Bagust, Adrian ;
Brown, Jonathan ;
Brennan, Alan ;
Chan, Wiley ;
Russell, Alan ;
Hoerger, Thomas ;
Hicks, Katherine ;
Casciano, Roman ;
Bergemann, Rito .
DIABETES CARE, 2007, 30 (06) :1638-1646
[23]   Archimedes: a new model for simulating health care systems - the mathematical formulation [J].
Schlessinger, L ;
Eddy, DM .
JOURNAL OF BIOMEDICAL INFORMATICS, 2002, 35 (01) :37-50
[24]   The UKPDS risk engine: a model for the risk of coronary heart disease in Type II diabetes (UKPDS 56) [J].
Stevens, RJ ;
Kothari, V ;
Adler, AI ;
Stratton, IM ;
Holman, RR .
CLINICAL SCIENCE, 2001, 101 (06) :671-679
[25]   Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33) [J].
Turner, RC ;
Holman, RR ;
Cull, CA ;
Stratton, IM ;
Matthews, DR ;
Frighi, V ;
Manley, SE ;
Neil, A ;
McElroy, K ;
Wright, D ;
Kohner, E ;
Fox, C ;
Hadden, D ;
Mehta, Z ;
Smith, A ;
Nugent, Z ;
Peto, R ;
Adlel, AI ;
Mann, JI ;
Bassett, PA ;
Oakes, SF ;
Dornan, TL ;
Aldington, S ;
Lipinski, H ;
Collum, R ;
Harrison, K ;
MacIntyre, C ;
Skinner, S ;
Mortemore, A ;
Nelson, D ;
Cockley, S ;
Levien, S ;
Bodsworth, L ;
Willox, R ;
Biggs, T ;
Dove, S ;
Beattie, E ;
Gradwell, M ;
Staples, S ;
Lam, R ;
Taylor, F ;
Leung, L ;
Carter, RD ;
Brownlee, SM ;
Fisher, KE ;
Islam, K ;
Jelfs, R ;
Williams, PA ;
Williams, FA ;
Sutton, PJ .
LANCET, 1998, 352 (9131) :837-853
[26]   LONG-TERM PROGNOSIS AFTER MYOCARDIAL-INFARCTION IN MEN WITH DIABETES [J].
ULVENSTAM, G ;
ABERG, A ;
BERGSTRAND, R ;
JOHANSSON, S ;
PENNERT, K ;
VEDIN, A ;
WILHELMSEN, L ;
WILHELMSSON, C .
DIABETES, 1985, 34 (08) :787-792
[27]   Use of secondary data to estimate instantaneous model parameters of diabetic heart disease: Lemonade Method [J].
Ye, Wen ;
Isaman, Deanna J. M. ;
Barhak, Jacob .
INFORMATION FUSION, 2012, 13 (02) :137-145
[28]   A computer simulation model of diabetes progression, quality of life, and cost [J].
Zhou, H ;
Isaman, DJM ;
Messinger, S ;
Brown, MB ;
Klein, R ;
Brandle, M ;
Herman, WH .
DIABETES CARE, 2005, 28 (12) :2856-2863