Quantum key distribution with untrusted detectors

被引:15
作者
Gonzalez, P. [1 ,2 ,3 ]
Rebon, L. [4 ,5 ]
da Silva, T. Ferreira [6 ]
Figueroa, M. [2 ,7 ]
Saavedra, C. [1 ,2 ]
Curty, M. [8 ]
Lima, G. [1 ,2 ,3 ]
Xavier, G. B. [2 ,3 ,7 ]
Nogueira, W. A. T. [2 ,3 ,9 ]
机构
[1] Univ Concepcion, Dept Fis, Concepcion, Chile
[2] Univ Concepcion, Ctr Opt & Photon, Concepcion 160C, Chile
[3] Univ Concepcion, MSI Nucl Adv Opt, Concepcion 160C, Chile
[4] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina
[5] Univ Buenos Aires, Dept Fis, Lab Proc Imagenes, Buenos Aires, DF, Argentina
[6] Natl Inst Metrol Qual & Technol, Opt Metrol Div, BR-25250020 Duque De Caxias, RJ, Brazil
[7] Univ Concepcion, Dept Ingn Elect, Concepcion 160C, Chile
[8] Univ Vigo, Dept Signal Theory & Commun, EI Telecomunicac, E-36310 Vigo, Spain
[9] Univ Fed Juiz de Fora, ICE, Dept Fis, BR-36036330 Juiz De Fora, Brazil
来源
PHYSICAL REVIEW A | 2015年 / 92卷 / 02期
关键词
SECURITY;
D O I
10.1103/PhysRevA.92.022337
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Side-channel attacks currently constitute the main challenge for quantum key distribution (QKD) to bridge theory with practice. So far two main approaches have been introduced to address this problem, (full) device-independent QKD and measurement-device-independent QKD. Here we present a third solution that might exceed the performance and practicality of the previous two in circumventing detector side-channel attacks, which arguably is the most hazardous part of QKD implementations. Our proposal has, however, one main requirement: the legitimate users of the system need to ensure that their labs do not leak any unwanted information to the outside. The security in the low-loss regime is guaranteed, while in the high-loss regime we already prove its robustness against some eavesdropping strategies.
引用
收藏
页数:8
相关论文
共 66 条
[1]   Device-independent security of quantum cryptography against collective attacks [J].
Acin, Antonio ;
Brunner, Nicolas ;
Gisin, Nicolas ;
Massar, Serge ;
Pironio, Stefano ;
Scarani, Valerio .
PHYSICAL REVIEW LETTERS, 2007, 98 (23)
[2]  
[Anonymous], 1984, P IEEE INT C COMP SY, DOI DOI 10.1016/J.TCS.2014.05.025
[3]   Memory Attacks on Device-Independent Quantum Cryptography [J].
Barrett, Jonathan ;
Colbeck, Roger ;
Kent, Adrian .
PHYSICAL REVIEW LETTERS, 2013, 110 (01)
[4]  
Bell JS., 1964, Phys Phys Fiz, V1, P195, DOI [10.1103/PhysicsPhysiqueFizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/Physics-PhysiqueFizika.1.195]
[5]   Quantum cryptographic network based on quantum memories [J].
Biham, E ;
Huttner, B ;
Mor, T .
PHYSICAL REVIEW A, 1996, 54 (04) :2651-2658
[6]   Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels [J].
Boschi, D ;
Branca, S ;
De Martini, F ;
Hardy, L ;
Popescu, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (06) :1121-1125
[7]   One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering [J].
Branciard, Cyril ;
Cavalcanti, Eric G. ;
Walborn, Stephen P. ;
Scarani, Valerio ;
Wiseman, Howard M. .
PHYSICAL REVIEW A, 2012, 85 (01)
[8]   Side-Channel-Free Quantum Key Distribution [J].
Braunstein, Samuel L. ;
Pirandola, Stefano .
PHYSICAL REVIEW LETTERS, 2012, 108 (13)
[9]  
Cao W.-F., ARXIV14102928
[10]   Detection-Loophole-Free Test of Quantum Nonlocality, and Applications [J].
Christensen, B. G. ;
McCusker, K. T. ;
Altepeter, J. B. ;
Calkins, B. ;
Gerrits, T. ;
Lita, A. E. ;
Miller, A. ;
Shalm, L. K. ;
Zhang, Y. ;
Nam, S. W. ;
Brunner, N. ;
Lim, C. C. W. ;
Gisin, N. ;
Kwiat, P. G. .
PHYSICAL REVIEW LETTERS, 2013, 111 (13)