Numerical solution of a diffusion problem by exponentially fitted finite difference methods

被引:28
作者
D'Ambrosio, Raffaele
Paternoster, Beatrice
机构
[1] Via Giovanni Paolo II, Fisciano, (Sa)
关键词
Exponentially fitted methods; Partial differential equations; Finite difference methods; Diffusion problems; QUADRATURE RULE; CONSTRUCTION;
D O I
10.1186/2193-1801-3-425
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper is focused on the accurate and efficient solution of partial differential differential equations modelling a diffusion problem by means of exponentially fitted finite difference numerical methods. After constructing and analysing special purpose finite differences for the approximation of second order partial derivatives, we employed them in the numerical solution of a diffusion equation with mixed boundary conditions. Numerical experiments reveal that a special purpose integration, both in space and in time, is more accurate and efficient than that gained by employing a general purpose solver.
引用
收藏
页数:7
相关论文
共 29 条
[1]  
Abramowitz M., 2013, Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables, V(eds)
[2]   A SINGLE-POOL MODEL FOR INTRACELLULAR CALCIUM OSCILLATIONS AND WAVES IN THE XENOPUS-LAEVIS OOCYTE [J].
ATRI, A ;
AMUNDSON, J ;
CLAPHAM, D ;
SNEYD, J .
BIOPHYSICAL JOURNAL, 1993, 65 (04) :1727-1739
[3]   Exponential Fitting Quadrature Rule for Functional Equations [J].
Cardone, A. ;
Paternoster, B. ;
Santomauro, G. .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 :1169-1172
[4]  
Cardone A, 2010, AIP CONF PROC, V1281, P2204
[5]   Exponential fitting Direct Quadrature methods for Volterra integral equations [J].
Cardone, Angelamaria ;
Ixaru, Liviu Gr. ;
Paternoster, Beatrice .
NUMERICAL ALGORITHMS, 2010, 55 (04) :467-480
[6]   An Exponentially Fitted Quadrature Rule over Unbounded Intervals [J].
Conte, D. ;
Paternoster, B. ;
Santomauro, G. .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 :1173-1176
[7]   Exponentially-fitted Gauss-Laguerre quadrature rule for integrals over an unbounded interval [J].
Conte, Dajana ;
Ixaru, Liviu Gr. ;
Paternoster, Beatrice ;
Santomauro, Giuseppe .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 :725-736
[8]   Revised exponentially fitted Runge-Kutta-Nystrom methods [J].
D'Ambrosio, R. ;
Paternoster, B. ;
Santomauro, G. .
APPLIED MATHEMATICS LETTERS, 2014, 30 :56-60
[9]   Exponentially fitted two-step Runge-Kutta methods: Construction and parameter selection [J].
D'Ambrosio, R. ;
Esposito, E. ;
Paternoster, B. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (14) :7468-7480
[10]   Exponentially fitted two-step hybrid methods for y" = f (x, y) [J].
D'Ambrosio, R. ;
Esposito, E. ;
Paternoster, B. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (16) :4888-4897