The Moser-Trudinger inequality in unbounded domains of Heisenberg group and sub-elliptic equations

被引:19
作者
Cohn, William S. [1 ]
Nguyen Lam [1 ]
Lu, Guozhen [1 ]
Yang, Yunyan [2 ]
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[2] Renmin Univ China, Dept Math, Informat Sch, Beijing 100872, Peoples R China
基金
美国国家科学基金会;
关键词
Trudinger-Moser inequality; Heisenberg group; Subelliptic PDEs; Mountain-pass theorem; Palais-Smale sequence; Existence of solutions; REPRESENTATION FORMULAS; CONSTANTS;
D O I
10.1016/j.na.2011.09.053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H-n = R-2n x R be the n-dimensional Heisenberg group, del(n)(H) be its sub-elliptic gradient operator, and rho(xi) = (vertical bar z vertical bar(4) + t(2))(1/4) for xi = (z, t) is an element of H-n be the distance function in H-n. Denote Q = 2n + 2 and Q' = Q/(Q - 1). It is proved in this paper that there exists a positive constant alpha* such that for any pair beta and alpha satisfying 0 <= beta < Q and alpha/alpha* + beta/Q <= 1, (parallel to u parallel to W1,Q) sup((Hn)) (<= 1) integral(Hn) 1/rho(xi)(beta) {e(alpha)vertical bar u vertical bar(Q)' - (Q-2)Sigma(k=0) alpha(k)vertical bar u vertical bar kQ'/k!} d xi < infinity, where W-1,W-Q (H-n) is the Sobolev space on H-n. When alpha/alpha* + beta/Q > 1, the above integral is still finite for any u is an element of W-1,W-Q (H-n). Furthermore the supremum is infinite if alpha/alpha(Q)+ beta/Q > 1, where alpha(Q) = Q(sigma Q)(1)/((Q-1)), sigma(Q) = integral(rho(z,t)=1) vertical bar z vertical bar(Q)d mu. Actually if we replace H-n and W-1,W-Q(H-n) by unbounded domain Omega and W-0(1,Q) (Omega) respectively, the above inequality still holds. As an application of this inequality, a sub-elliptic equation with exponential growth is considered. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4483 / 4495
页数:13
相关论文
共 23 条
[1]   An Interpolation of Hardy Inequality and Trudinger-Moser Inequality in RN and Its Applications [J].
Adimurthi ;
Yang, Yunyan .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (13) :2394-2426
[2]  
[Anonymous], 1997, Abstr. Appl. Anal.
[3]   Fundamental solution for the Q-Laplacian and sharp Moser-Trudinger inequality in Carnot groups [J].
Balogh, ZM ;
Manfredi, JJ ;
Tyson, JT .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 204 (01) :35-49
[4]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[5]  
Bonfiglioli A, 2007, SPRINGER MONOGR MATH, P3
[6]  
CHERRIER P, 1984, B SCI MATH, V108, P225
[7]  
Cherrier P., 1981, Comptes Rendus de Seances de l'Academie des Sciences, Serie I (Mathematique), V292, P637
[8]   Best constants for Moser-Trudinger inequalities, fundamental solutions and one-parameter representation formulas on groups of Heisenberg type [J].
Cohn, WS ;
Lu, GZ .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2002, 18 (02) :375-390
[9]   Best constants for Moser-Trudinger inequalities on the Heisenberg group [J].
Cohn, WS ;
Lu, GZ .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 (04) :1567-1591
[10]   ELLIPTIC-EQUATIONS IN R(2) WITH NONLINEARITIES IN THE CRITICAL GROWTH RANGE [J].
DEFIGUEIREDO, DG ;
MIYAGAKI, OH ;
RUF, B .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1995, 3 (02) :139-153