Fast and improved scaled HSS preconditioner for steady-state space-fractional diffusion equations

被引:2
作者
Chen, Fang [1 ]
Li, Tian-Yi [1 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
关键词
Matrix splitting; HSS iteration; Preconditioner; Convergence;
D O I
10.1007/s11075-020-00982-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the discrete linear system resulted from the considered steady-state space-fractional diffusion equations, we propose an improved scaled HSS (ISHSS) iteration method and discuss its convergence theory. Then, we construct a fast ISHSS (FISHSS) preconditioner to accelerate the convergence rates of the Krylov subspace iteration methods. We discuss the spectral properties of the FISHSS preconditioning matrix. Numerical experiments show the good performance of the FISHSS preconditioner.
引用
收藏
页码:651 / 665
页数:15
相关论文
共 50 条
[21]   Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations [J].
Moghaderi, Hamid ;
Dehghan, Mehdi ;
Donatelli, Marco ;
Mazza, Mariarosa .
JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 350 :992-1011
[22]   All-at-once multigrid approaches for one-dimensional space-fractional diffusion equations [J].
Donatelli, Marco ;
Krause, Rolf ;
Mazza, Mariarosa ;
Trotti, Ken .
CALCOLO, 2021, 58 (04)
[23]   An ADI Iteration Method for Solving Discretized Two-Dimensional Space-Fractional Diffusion Equations [J].
Ran, Yu-Hong ;
Wu, Qian-Qian .
COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2025, 7 (05) :1848-1860
[24]   An efficient quadratic finite volume method for variable coefficient Riesz space-fractional diffusion equations [J].
Li, Fangli ;
Fu, Hongfei ;
Liu, Jun .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (04) :2934-2951
[25]   A FAST COMPACT DIFFERENCE METHOD FOR TWO-DIMENSIONAL NONLINEAR SPACE-FRACTIONAL COMPLEX GINZBURG-LANDAU EQUATIONS [J].
Zhang, Lu ;
Zhang, Qifeng ;
Sun, Hai-wei .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2021, 39 (05) :697-721
[26]   A preconditioned fast finite volume method for two-dimensional conservative space-fractional diffusion equations on non-uniform meshes [J].
Xu, Yuan ;
Lei, Siu-Long ;
Sun, Hai-Wei ;
Fang, Zhi-Wei .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 196 :30-48
[27]   CRANK-NICOLSON ALTERNATIVE DIRECTION IMPLICIT METHOD FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS WITH NONSEPARABLE COEFFICIENTS [J].
Lin, Xue-Lei ;
Ng, Michael K. ;
Sun, Hai-Wei .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) :997-1019
[28]   An Efficient Finite Volume Method for Nonlinear Distributed-Order Space-Fractional Diffusion Equations in Three Space Dimensions [J].
Zheng, Xiangcheng ;
Liu, Huan ;
Wang, Hong ;
Fu, Hongfei .
JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (03) :1395-1418
[29]   An efficient multigrid method with preconditioned smoother for two-dimensional anisotropic space-fractional diffusion equations [J].
Xu, Yuan ;
Lei, Siu-Long ;
Sun, Hai-Wei .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 124 (218-226) :218-226
[30]   Fast solution methods for Riesz space fractional diffusion equations with non-separable coefficients [J].
Yang, Hong ;
Lao, Cheng-Xue ;
She, Zi-Hang .
APPLIED MATHEMATICS AND COMPUTATION, 2023, 445