How do components of real cloud water affect aqueous pyruvate oxidation?

被引:16
作者
Boris, Alexandra J. [1 ]
Desyaterik, Yury [1 ]
Collett, Jeffrey L., Jr. [1 ]
机构
[1] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA
基金
美国国家科学基金会;
关键词
Aqueous SOA; Pyruvic acid; Cloud chemistry; SECONDARY ORGANIC AEROSOL; OH RADICAL OXIDATION; OLIGOMER FORMATION; RATE CONSTANTS; OXALIC-ACID; CHEMISTRY; GLYOXAL; PHASE; SOA; METHYLGLYOXAL;
D O I
10.1016/j.atmosres.2014.02.004
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Chemical oxidation of dissolved volatile or semi-volatile organic compounds within fog and cloud droplets in the atmosphere could be a major pathway for secondary organic aerosol (SOA) formation. This proposed pathway consists of: (1) dissolution of organic chemicals from the gas phase into a droplet; (2) reaction with an aqueous phase oxidant to yield low volatility products; and (3) formation of particle phase organic matter as the droplet evaporates. The common approach to simulating aqueous SOA (aqSOA) reactions is photo-oxidation of laboratory standards in pure water. Reactions leading to aqSOA formation should be studied within real cloud and fog water to determine whether additional competing processes might alter apparent rates of reaction as indicated by rates of reactant loss or product formation. To evaluate and identify the origin of any cloud water matrix effects on one example of observed aqSOA production, pyruvate oxidation experiments simulating aqSOA formation were monitored within pure water, real cloud water samples, and an aqueous solution of inorganic salts. Two analysis methods were used: online electrospray ionization high-resolution time-of-flight mass spectrometry (ESI-HR-ToF-MS), and offline anion exchange chromatography (IC) with quantitative conductivity and qualitative ESI-HR-ToF-MS detection. The apparent rate of oxidation of pyruvate was slowed in cloud water matrices: overall measured degradation rates of pyruvate were lower than in pure water. This can be at least partially accounted for by the observed formation of pyruvate from reactions of other cloud water components. Organic constituents of cloud water also compete for oxidants and/or UV light, contributing to the observed slowed degradation rates of pyruvate. The oxidation of pyruvate was not significantly affected by the presence of inorganic anions (nitrate and sulfate) at cloud-relevant concentrations. Future bulk studies of aqSOA formation reactions using simplified simulated cloud solutions and model estimates of generated aqSOA mass should take into account possible generation of, or competition for, oxidant molecules by organic components found in the complex matrices typically associated with real atmospheric water droplets. Additionally, it is likely that some components of real atmospheric waters have not yet been identified as aqSOA precursors, but could be distinguished through further simplified bulk oxidations of known atmospheric water components. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 106
页数:12
相关论文
共 65 条
[1]   Oligomers formed through in-cloud methylglyoxal reactions: Chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry [J].
Altieri, K. E. ;
Seitzinger, S. P. ;
Carlton, A. G. ;
Turpin, B. J. ;
Klein, G. C. ;
Marshall, A. G. .
ATMOSPHERIC ENVIRONMENT, 2008, 42 (07) :1476-1490
[2]   Evidence for oligomer formation in clouds: Reactions of isoprene oxidation products [J].
Altieri, Katye E. ;
Carlton, Annmarie G. ;
Lim, Ho-Jin ;
Turpin, Barbara J. ;
Seitzinger, Sybil P. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (16) :4956-4960
[3]   Aromatic carbonyl compounds as aqueous-phase photochemical sources of hydrogen peroxide in acidic sulfate aerosols, fogs, and clouds .1. Non-phenolic methoxybenzaldehydes and methoxyacetophenones with reductants (phenols) [J].
Anastasio, C ;
Faust, BC ;
Rao, CJ .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1997, 31 (01) :218-232
[4]   Chemistry of fog waters in California's Central Valley: 1. In situ photoformation of hydroxyl radical and singlet molecular oxygen [J].
Anastasio, C ;
McGregor, KG .
ATMOSPHERIC ENVIRONMENT, 2001, 35 (06) :1079-1089
[5]   Sources, sinks, and mechanisms of hydroxyl radical (•OH) photoproduction and consumption in authentic acidic continental cloud waters from Whiteface Mountain, New York:: The role of the Fe(r) (r=II, III) photochemical cycle [J].
Arakaki, T ;
Faust, BC .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D3) :3487-3504
[6]   Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions - Part 3: Carboxylic and dicarboxylic acids [J].
Barsanti, Kelley C. ;
Pankow, James F. .
ATMOSPHERIC ENVIRONMENT, 2006, 40 (34) :6676-6686
[7]  
BRANTNER B, 1994, WATER AIR SOIL POLL, V74, P363
[8]   CRITICAL-REVIEW OF RATE CONSTANTS FOR REACTIONS OF HYDRATED ELECTRONS, HYDROGEN-ATOMS AND HYDROXYL RADICALS (.OH/.O-) IN AQUEOUS-SOLUTION [J].
BUXTON, GV ;
GREENSTOCK, CL ;
HELMAN, WP ;
ROSS, AB .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1988, 17 (02) :513-886
[9]   Inhibitory effect of dissolved organic matter on triplet-induced oxidation of aquatic contaminants [J].
Canonica, Silvio ;
Laubscher, Hans-Ulrich .
PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2008, 7 (05) :547-551
[10]   Link between isoprene and secondary organic aerosol (SOA): Pyruvic acid oxidation yields low volatility organic acids in clouds [J].
Carlton, AG ;
Turpin, BJ ;
Lim, HJ ;
Altieri, KE ;
Seitzinger, S .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (06)