Objective Bayesian analysis of the Frechet stress-strength model

被引:14
作者
Abbas, Kamran [1 ,2 ]
Tang, Yincai [1 ]
机构
[1] E China Normal Univ, Sch Finance & Stat, Shanghai 200241, Peoples R China
[2] Univ Azad Jammu & Kashmir, Dept Stat, Muzaffarabad, Pakistan
基金
中国国家自然科学基金;
关键词
Frechet distribution; Reference priors; Matching priors; Jeffreys prior; Bayesian inference; INFERENCE; PRIORS;
D O I
10.1016/j.spl.2013.09.014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Several reference priors and a general form of matching priors are derived for a stress-strength system, and it is concluded that none of the reference priors is a matching prior. The study shows that the matching prior performs better than Jeffreys prior and reference priors in meeting the target coverage probabilities. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:169 / 175
页数:7
相关论文
共 17 条
[1]  
[Anonymous], 1982, PROGR SCI ENG COMPOS
[2]  
[Anonymous], 1992, BAYESIAN STAT
[3]  
BERGER J, 1992, BAYESIAN STATISTICS, V4, P205
[4]  
Berger J. O., 1992, Bayesian Statistics, V4, P35
[5]   ESTIMATING A PRODUCT OF MEANS - BAYESIAN-ANALYSIS WITH REFERENCE PRIORS [J].
BERGER, JO ;
BERNARDO, JM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (405) :200-207
[6]  
BERNARDO JM, 1979, J R STAT SOC B, V41, P113
[7]  
Birnbuam Z.M., 1956, CONTRIBUTIONS THEORY, V1, P13
[8]   ON PRIORS PROVIDING FREQUENTIST VALIDITY FOR BAYESIAN-INFERENCE [J].
DATTA, GS ;
GHOSH, JK .
BIOMETRIKA, 1995, 82 (01) :37-45
[9]  
Frechet M., 1927, ANN SOC POLON MATH, V6
[10]  
Jeffreys H., 1998, THEORY PROBABILITY