Embedding lattice actions in flows with multidimensional time

被引:10
作者
Tikhonov, SV
机构
关键词
D O I
10.1070/SM2006v197n01ABEH003748
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The genericity of the embeddability of lattice actions in flows with multidimensional time is studied. In particular, questions of de la Rue and de Sam Lazaro on the genericity of the embeddability of an action of a 2-lattice in a flow and the embeddability of a transformation in injective flow actions with multidimensional time are answered. It is also shown that a generic transformation has a set of roots of continuum cardinality in an arbitrary prescribed massive set.
引用
收藏
页码:95 / 126
页数:32
相关论文
共 15 条
[1]  
Ageev O. N., 2000, DOKL AKAD NAUK, V374, P439
[2]  
[Anonymous], 2003, USP MAT NAUK, V58, P177, DOI 10.4213/rm596
[3]  
Cornfeld I. P., 1982, Ergodic Theory
[4]   The generic transformation can be embedded in a flow [J].
De la Rue, T ;
Lazaro, JD .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2003, 39 (01) :121-134
[5]  
Glasner Eli, 1998, CONT MATH, V215, P231
[6]  
Halmos P. R., 1960, LECT ERGODIC THEORY
[7]   THE COMMUTANT IS THE WEAK CLOSURE OF THE POWERS, FOR RANK-1 TRANSFORMATIONS [J].
KING, J .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1986, 6 :363-384
[8]  
King JLF., 2000, C MATH, V84, P521
[9]  
KTZNELSON Y, 1972, ISRAEL J MATH, V12, P16
[10]  
Kuratowski K., 1966, Topology, V1