A graph-based approach to analyze flux-balanced pathways in metabolic networks

被引:8
作者
Arabzadeh, Mona [1 ]
Zamani, Morteza Saheb [1 ]
Sedighi, Mehdi [1 ]
Marashi, Sayed-Amir [2 ]
机构
[1] Amirkabir Univ Technol, Dept Comp Engn & Informat Technol, Tehran, Iran
[2] Univ Tehran, Coll Sci, Dept Biotechnol, Tehran, Iran
关键词
Elementary flux mode (EFM); Graph data model; Metabolic network; GENOME-SCALE MODELS; ELEMENTARY MODES; COMPUTATION; COMPLEXITY; ALGORITHM; SYSTEMS;
D O I
10.1016/j.biosystems.2017.12.001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
An elementary flux mode (EFM) is a pathway with minimum set of reactions that are functional in steady-state constrained space. Due to the high computational complexity of calculating EFMs, different approaches have been proposed to find these flux-balanced pathways. In this paper, an approach to find a subset of EFMs is proposed based on a graph data model. The given metabolic network is mapped to the graph model and decisions for reaction inclusion can be made based on metabolites and their associated reactions. This notion makes the approach more convenient to categorize the output pathways. Implications of the proposed method on metabolic networks are discussed. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:40 / 51
页数:12
相关论文
共 38 条
[1]   A note on the complexity of finding and enumerating elementary modes [J].
Acuna, Vicente ;
Marchetti-Spaccamela, Alberto ;
Sagot, Marie-France ;
Stougie, Leen .
BIOSYSTEMS, 2010, 99 (03) :210-214
[2]   Modes and cuts in metabolic networks: Complexity and algorithms [J].
Acuna, Vicente ;
Chierichetti, Flavio ;
Lacroix, Vincent ;
Marchetti-Spaccamela, Alberto ;
Sagot, Marie-France ;
Stougie, Leen .
BIOSYSTEMS, 2009, 95 (01) :51-60
[3]  
[Anonymous], 1994, J BIOL SYSTEMS, DOI DOI 10.1142/S0218339094000131
[4]   Minimal reaction sets for Escherichia coli metabolism under different growth requirements and uptake environments [J].
Burgard, AP ;
Vaidyaraman, S ;
Maranas, CD .
BIOTECHNOLOGY PROGRESS, 2001, 17 (05) :791-797
[5]   Computing Elementary Flux Modes Involving a Set of Target Reactions [J].
David, Laszlo ;
Bockmayr, Alexander .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2014, 11 (06) :1099-1107
[6]   Computing the shortest elementary flux modes in genome-scale metabolic networks [J].
de Figueiredo, Luis F. ;
Podhorski, Adam ;
Rubio, Angel ;
Kaleta, Christoph ;
Beasley, John E. ;
Schuster, Stefan ;
Planes, Francisco J. .
BIOINFORMATICS, 2009, 25 (23) :3158-3165
[7]   Computation of elementary modes: a unifying framework and the new binary approach [J].
Gagneur, J ;
Klamt, S .
BMC BIOINFORMATICS, 2004, 5 (1)
[8]   Metabolomics integrated elementary flux mode analysis in large metabolic networks [J].
Gerstl, Matthias P. ;
Ruckerbauer, David E. ;
Mattanovich, Diethard ;
Jungreuthmayer, Christian ;
Zanghellini, Juergen .
SCIENTIFIC REPORTS, 2015, 5
[9]   Detection of stoichiometric inconsistencies in biomolecular models [J].
Gevorgyan, Albert ;
Poolman, Mark G. ;
Fell, David A. .
BIOINFORMATICS, 2008, 24 (19) :2245-2251
[10]   High-throughput generation, optimization and analysis of genome-scale metabolic models [J].
Henry, Christopher S. ;
DeJongh, Matthew ;
Best, Aaron A. ;
Frybarger, Paul M. ;
Linsay, Ben ;
Stevens, Rick L. .
NATURE BIOTECHNOLOGY, 2010, 28 (09) :977-U22