Continuity properties for modulation spaces, with applications to pseudo-differential calculus, II

被引:121
作者
Toft, J [1 ]
机构
[1] Vaxjo Univ, Sch Math & Syst Engn, Vaxjo, Sweden
关键词
modulation spaces; pseudo-differential operators; Toeplitz operators; trace theorems; embeddings;
D O I
10.1023/B:AGAG.0000023261.94488.f4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss continuity for weighted modulation spaces, and prove that many such spaces can be obtained in a canonical way from the corresponding standard modulation spaces. We also discuss the trace operator a-->a(0, .) acting on modulation spaces. The results are used to get inclusions between modulation spaces and Besov spaces, and proving continuity for pseudo-differential operators and Toeplitz operators.
引用
收藏
页码:73 / 106
页数:34
相关论文
共 53 条
[1]  
[Anonymous], 1979, LONDON MATH SOC LECT
[2]  
Bergh J., 1976, INTERPOLATION SPACES
[3]  
BOGGIATTO P, 2002, GEN ANTIWICK OPERATO
[4]  
BOGGIATTO P, 2002, THESIS MAT U TORINO
[5]  
Boulkhemair A, 1997, MATH RES LETT, V4, P53
[6]   Time-frequency analysis of localization operators [J].
Cordero, E ;
Gröchenig, K .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 205 (01) :107-131
[7]  
Czaja W, 2002, MATH NACHR, V233, P77, DOI 10.1002/1522-2616(200201)233:1<77::AID-MANA77>3.3.CO
[8]  
2-2
[9]  
Dimassi M., 1999, LONDON MATH SOC LECT, V268
[10]  
FEICHTIGNER HG, 1986, P C CONSTR FUNCT THE, P113