Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics

被引:153
作者
Kittlaus, Eric A. [1 ]
Jones, William M. [1 ]
Rakich, Peter T. [2 ]
Otterstrom, Nils T. [2 ]
Muller, Richard E. [1 ]
Rais-Zadeh, Mina [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA
[2] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
BRILLOUIN-SCATTERING; OPTICAL ISOLATION; MODE CONVERSION; MICROWAVE; LIGHT; OSCILLATOR; MODULATORS; PHONONS; POWER;
D O I
10.1038/s41566-020-00711-9
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Emerging technologies based on tailorable photon-phonon interactions promise new capabilities ranging from high-fidelity information processing to non-reciprocal optics and quantum state control. However, many existing realizations of such light-sound couplings involve unconventional materials and fabrication schemes challenging to co-implement with scalable integrated photonic circuitry. Here, we demonstrate direct acousto-optic modulation within silicon waveguides using electrically driven surface acoustic waves (SAWs). By co-integrating electromechanical SAW transducers with a standard silicon-on-insulator photonic platform, we harness silicon's strong elasto-optic effect to create travelling-wave phase and single-sideband amplitude modulators from 1 to 5 GHz, with index modulation strengths comparable to electro-optic technologies. Extending this non-local interaction to centimetre scales, we demonstrate non-reciprocal modulation with operation bandwidths of >100 GHz and insertion losses of <0.6 dB. This acousto-optic platform is compatible with complementary metal-oxide-semiconductor fabrication processes and existing silicon photonic device architectures, opening the door to flexible, low-loss modulators and non-magnetic optical isolators and circulators in integrated photonic circuits.
引用
收藏
页码:43 / 52
页数:10
相关论文
共 72 条
[1]  
Andrews RW, 2014, NAT PHYS, V10, P321, DOI [10.1038/NPHYS2911, 10.1038/nphys2911]
[2]  
[Anonymous], 2012, 25 GB S SILICON PHOT
[3]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[4]   Acousto-Optic Modulation and Optoacoustic Gating in Piezo-Optomechanical Circuits [J].
Balram, Krishna C. ;
Davanco, Marcelo I. ;
Ilic, B. Robert ;
Kyhm, Ji-Hoon ;
Song, Jin Dong ;
Srinivasan, Kartik .
PHYSICAL REVIEW APPLIED, 2017, 7 (02)
[5]   Nonreciprocal reconfigurable microwave optomechanical circuit [J].
Bernier, N. R. ;
Toth, L. D. ;
Koottandavida, A. ;
Ioannou, M. A. ;
Malz, D. ;
Nunnenkamp, A. ;
Feofanov, A. K. ;
Kippenberg, T. J. .
NATURE COMMUNICATIONS, 2017, 8
[6]   On-chip optical isolation in monolithically integrated non-reciprocal optical resonators [J].
Bi, Lei ;
Hu, Juejun ;
Jiang, Peng ;
Kim, Dong Hun ;
Dionne, Gerald F. ;
Kimerling, Lionel C. ;
Ross, C. A. .
NATURE PHOTONICS, 2011, 5 (12) :758-762
[7]   Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors [J].
Chen, Long ;
Preston, Kyle ;
Manipatruni, Sasikanth ;
Lipson, Michal .
OPTICS EXPRESS, 2009, 17 (17) :15248-15256
[8]   Compact Mach-Zehnder acousto-optic modulator [J].
de Lima, M. M., Jr. ;
Beck, M. ;
Hey, R. ;
Santos, P. V. .
APPLIED PHYSICS LETTERS, 2006, 89 (12)
[9]   Brillouin-scattering-induced transparency and non-reciprocal light storage [J].
Dong, Chun-Hua ;
Shen, Zhen ;
Zou, Chang-Ling ;
Zhang, Yan-Lei ;
Fu, Wei ;
Guo, Guang-Can .
NATURE COMMUNICATIONS, 2015, 6
[10]   Optomechanical crystals [J].
Eichenfield, Matt ;
Chan, Jasper ;
Camacho, Ryan M. ;
Vahala, Kerry J. ;
Painter, Oskar .
NATURE, 2009, 462 (7269) :78-82