A novel synthesis of α-MoO3 nanobelts and the characterization

被引:33
作者
Chiang, Tzu Hsuan [1 ]
Yeh, Hung Che [1 ]
机构
[1] Natl United Univ, Dept Energy Engn, Miaoli 36003, Taiwan
关键词
Molybdenum trioxide; Nanobelts; Ethylene glycol; Sintering time; MOO3; NANOBELTS; MOLYBDENUM TRIOXIDE; LITHIUM INTERCALATION; OPTICAL-PROPERTIES; CRYSTALLINE MOO3; PERFORMANCE; OXIDES; NANOSTRUCTURES; NANOWIRES; BATTERIES;
D O I
10.1016/j.jallcom.2013.09.137
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study investigated the reaction of ethylene glycol with ammonium molybdate tetrahydrate that the reaction product had the structural characteristics of alpha-MoO3 (molybdenum trioxide) nanobelts. This work provided a novel and effective method for the fabrication of high-quality alpha-MoO3 nanobelts. The initial reaction was very simple, only requiring reaction at reaction time of 40 min at 120 degrees C to form MoO3 center dot H2O, which was then converted to alpha-MoO3 by sintering at 300 degrees C for 1 h. The alpha-MoO3 nanobelts were formed at a sintering temperature of 700 degrees C for 3 h. The structure and morphology of the alpha-MoO3 nanobelts were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The alpha-MoO3 nanobelts that were obtained after sintering at 700 degrees C for 3 h were 99 nm thick, 500 mu m length and had an average width of 10 mu m. The (020), (040), (060), and (0100) planes were observed in XRD, implying that the alpha-MoO3 nanobelts grew with a strongly-preferred orientation. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:535 / 541
页数:7
相关论文
共 41 条
[1]  
Arroyo-Albiter M., 2005, MICROSC MICROANAL, V11, P1570
[2]   Influence of Lithium Insertion on the Electronic Transport in Electroactive MoO3 Nanobelts and Classical Powders: Morphological and Particle Size Effects [J].
Berthumeyrie, S. ;
Badot, J. -C. ;
Pereira-Ramos, J-P. ;
Dubrunfaut, O. ;
Bach, S. ;
Vermaut, Ph. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (46) :19803-19814
[3]  
Byrappa K., 2001, HDB HYDROTHERMAL TEC, P754
[4]   Morphology-Controlled Flame Synthesis of Single, Branched, and Flower-like α-MoO3 Nanobelt Arrays [J].
Cai, Lili ;
Rao, Pratap M. ;
Zheng, Xiaolin .
NANO LETTERS, 2011, 11 (02) :872-877
[5]   A density functional study of clean and hydrogen-covered α-MoO3(010):: Electronic structure and surface relaxation [J].
Chen, M ;
Waghmare, UV ;
Friend, CM ;
Kaxiras, E .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (16) :6854-6860
[6]   Single-crystalline orthorhombic molybdenum oxide nanobelts: synthesis and photocatalytic properties [J].
Chen, Yuping ;
Lu, Chunliang ;
Xu, Lin ;
Ma, Ying ;
Hou, Wenhua ;
Zhu, Jun-Jie .
CRYSTENGCOMM, 2010, 12 (11) :3740-3747
[7]   Layered vanadium and molybdenum oxides: batteries and electrochromics [J].
Chernova, Natasha A. ;
Roppolo, Megan ;
Dillon, Anne C. ;
Whittingham, M. Stanley .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (17) :2526-2552
[8]   XPS Study of MoO3 Interlayer Between Aluminum Electrode and Inkjet-Printed Zinc Tin Oxide for Thin-Film Transistor [J].
Choi, Woon-Seop .
TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS, 2011, 12 (06) :267-270
[9]   Selective thermal reduction of single-layer MoO3 nanostructures on Au(111) [J].
Deng, Xingyi ;
Quek, Su Ying ;
Biener, Monika M. ;
Biener, Juergen ;
Kang, Dae Hyuk ;
Schalek, Richard ;
Kaxiras, Efthimios ;
Friend, Cynthia M. .
SURFACE SCIENCE, 2008, 602 (06) :1166-1174
[10]   Molybdenum trioxide nanostructures prepared by thermal oxidization of molybdenum [J].
Ding, Q. P. ;
Huang, H. B. ;
Duan, J. H. ;
Gong, J. F. ;
Yang, S. G. ;
Zhao, X. N. ;
Du, Y. W. .
JOURNAL OF CRYSTAL GROWTH, 2006, 294 (02) :304-308