PERIODIC SUCCESSIVE APPROXIMATIONS AND INTERVAL HALVING

被引:18
作者
Ronto, A. [1 ]
Ronto, M. [2 ]
机构
[1] Acad Sci Czech Republic, Inst Math, Brno 61662, Czech Republic
[2] Univ Miskolc, Dept Anal, H-3515 Miskolc, Hungary
关键词
Periodic boundary value problems; parametrisation technique; periodic successive approximations; interval halving; BOUNDARY-VALUE-PROBLEMS; DIFFERENTIAL-EQUATIONS; EXISTENCE; SYSTEMS;
D O I
10.18514/MMN.2012.562
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show how a suitable interval halving and parametrisation technique can help to essentially improve the sufficient convergence condition for the periodic successive approximations dealing with periodic solutions of nonlinear non-autonomous systems of ordinary differential equations.
引用
收藏
页码:459 / 482
页数:24
相关论文
共 29 条
[1]  
[Anonymous], 2000, NUMERICAL ANAL METHO
[2]  
[Anonymous], 1994, APPL MATH SCI
[3]   EXISTENCE AND APPROXIMATION OF SOLUTIONS OF SOME FIRST ORDER ITERATIVE DIFFERENTIAL EQUATIONS [J].
Berinde, Vasile .
MISKOLC MATHEMATICAL NOTES, 2010, 11 (01) :13-26
[4]  
Cesari L., 1963, ERGEBNISSE MATH IHRE, V16
[5]  
Feckan M., 2006, MISKOLC MATH NOTES, V7, P121
[6]  
Gaines R. E., 1977, Coincidence degree, and nonlinear differential equations
[7]  
Hale J.K., 1963, Oscillations in Nonlinear Systems
[8]   On periodic solutions of two-dimensional nonautonomous differential systems [J].
Kiguradze, I ;
Mukhigulashvili, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (02) :241-256
[9]  
Ront?? A., 2003, NONLINEAR OSCIL, V6, P82, DOI 10.1023/A:1024827821289
[10]  
Rontó A, 2012, CARPATHIAN J MATH, V28, P163