Modulation of Intrinsic Brain Connectivity by Implicit Electroencephalographic Neurofeedback

被引:21
作者
Dobrushina, Olga R. [1 ,2 ]
Vlasova, Roza M. [3 ]
Rumshiskaya, Alena D. [4 ]
Litvinova, Liudmila D. [5 ]
Mershina, Elena A. [6 ]
Sinitsyn, Valentin E. [6 ]
Pechenkova, Ekaterina, V [7 ]
机构
[1] Res Ctr Neurol, Neurol Dept 3, Moscow, Russia
[2] Int Inst Psychosomat Hlth, Moscow, Russia
[3] Univ N Carolina, Dept Psychiat, Chapel Hill, NC 27515 USA
[4] Davydovsky Publ Clin Hosp, Moscow, Russia
[5] Fed Ctr Treatment & Rehabil, Radiol Dept, Moscow, Russia
[6] Lomonosov Moscow State Univ, Med Res & Educ Ctr, Moscow, Russia
[7] Natl Res Univ Higher Sch Econ, Lab Cognit Res, Moscow, Russia
关键词
neurofeedback; functional magnetic resonance imaging; resting-state fMRI; intrinsic brain connectivity; salience network; EEG; FMRI; BIOFEEDBACK; NETWORKS; DYNAMICS; REGIONS; SYSTEM; CORTEX; STATE;
D O I
10.3389/fnhum.2020.00192
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Despite the increasing popularity of neurofeedback, its mechanisms of action are still poorly understood. This study aims to describe the processes underlying implicit electroencephalographic neurofeedback. Fifty-two healthy volunteers were randomly assigned to a single session of infra-low frequency neurofeedback or sham neurofeedback, with electrodes over the right middle temporal gyrus and the right inferior parietal lobule. They observed a moving rocket, the speed of which was modulated by the waveform derived from a band-limited infra-low frequency filter. Immediately before and after the session, the participants underwent a resting-state fMRI. Network-based statistical analysis was applied, comparing post- vs. pre-session and real vs. sham neurofeedback conditions. As a result, two phenomena were observed. First, we described a brain circuit related to the implicit neurofeedback process itself, consisting of the lateral occipital cortex, right dorsolateral prefrontal cortex, left orbitofrontal cortex, right ventral striatum, and bilateral dorsal striatum. Second, we found increased connectivity between key regions of the salience, language, and visual networks, which is indicative of integration in sensory processing. Thus, it appears that a single session of implicit infra-low frequency electroencephalographic neurofeedback leads to significant changes in intrinsic brain connectivity.
引用
收藏
页数:13
相关论文
共 48 条
[1]   The Effect of EEG Biofeedback on Reducing Postcancer Cognitive Impairment [J].
Alvarez, Jean ;
Meyer, Fremonta L. ;
Granoff, David L. ;
Lundy, Allan .
INTEGRATIVE CANCER THERAPIES, 2013, 12 (06) :475-487
[2]   Modulation of feedback related activity in the rostral anterior cingulate cortex during trial and error exploration [J].
Amiez, Celine ;
Sallet, Jerome ;
Procyk, Emmanuel ;
Petrides, Michael .
NEUROIMAGE, 2012, 63 (03) :1078-1090
[3]   A component based noise correction method (CompCor) for BOLD and perfusion based fMRI [J].
Behzadi, Yashar ;
Restom, Khaled ;
Liau, Joy ;
Liu, Thomas T. .
NEUROIMAGE, 2007, 37 (01) :90-101
[4]   Interoception and emotion [J].
Critchley, Hugo D. ;
Garfinkel, Sarah N. .
CURRENT OPINION IN PSYCHOLOGY, 2017, 17 :7-14
[5]  
Davidson R.J., 1995, BRAIN ASYMMETRY
[6]   An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest [J].
Desikan, Rahul S. ;
Segonne, Florent ;
Fischl, Bruce ;
Quinn, Brian T. ;
Dickerson, Bradford C. ;
Blacker, Deborah ;
Buckner, Randy L. ;
Dale, Anders M. ;
Maguire, R. Paul ;
Hyman, Bradley T. ;
Albert, Marilyn S. ;
Killiany, Ronald J. .
NEUROIMAGE, 2006, 31 (03) :968-980
[8]   Meta-analysis of real-time fMRI neurofeedback studies using individual participant data: How is brain regulation mediated? [J].
Emmert, Kirsten ;
Kopel, Rotem ;
Sulzer, James ;
Bruehl, Annette B. ;
Berman, Brian D. ;
Linden, David E. J. ;
Horovitz, Silvina G. ;
Breimhorst, Markus ;
Caria, Andrea ;
Frank, Sabine ;
Johnston, Stephen ;
Long, Zhiying ;
Paret, Christian ;
Robineau, Fabien ;
Veit, Ralf ;
Bartsch, Andreas ;
Beckmann, Christian F. ;
Van De Ville, Dimitri ;
Haller, Sven .
NEUROIMAGE, 2016, 124 :806-812
[9]   A psychoengineering paradigm for the neurocognitive mechanisms of biofeedback and neurofeedback [J].
Gaume, A. ;
Vialattea, A. ;
Mora-Sanchez, A. ;
Ramdani, C. ;
Vialatte, F. B. .
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2016, 68 :891-910
[10]  
Grin-Yatsenko VA., 2018, Biofeedback, P75, DOI DOI 10.5772/INTECHOPEN.77154