Orthogonal Laurent polynomials on the unit circle, extended CMV ordering and 2D Toda type integrable hierarchies

被引:21
作者
Alvarez-Fernandez, Carlos [1 ,2 ]
Manas, Manuel [1 ]
机构
[1] Univ Complutense, Dept Fis Teor 2, E-28040 Madrid, Spain
[2] Univ Pontificia Comillas, Dept Metodos Cuantitat, Madrid 28015, Spain
关键词
Orthogonal Laurent polynomials in the unit circle; CMV ordering; Gauss-Borel factorization; Christoffel-Darboux; Integrable systems; SZEGO POLYNOMIALS; DISCRETE KP; MULTICOMPONENT KP; MATRICES; SCHUR; ZEROS; ASYMPTOTICS; TRANSFORMS; EQUATIONS; ORBITS;
D O I
10.1016/j.aim.2013.02.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We connect the theory of orthogonal Laurent polynomials on the unit circle and the theory of Toda-like integrable systems using the Gauss-Borel factorization of a Cantero-Moral-Velazquez moment matrix, that we construct in terms of a complex quasi-definite measure supported on the unit circle. The factorization of the moment matrix leads to orthogonal Laurent polynomials on the unit circle and the corresponding second kind functions. We obtain Jacobi operators, 5-term recursion relations, Christoffel-Darboux kernels, and corresponding Christoffel-Darboux formulas from this point of view in a completely algebraic way. We generalize the Cantero-Moral-Velazquez sequence of Laurent monomials, recursion relations, Christoffel-Darboux kernels, and corresponding Christoffel-Darboux formulas in this extended context. We introduce continuous deformations of the moment matrix and we show how they induce a time dependent orthogonality problem related to a Toda-type integrable system, which is connected with the well known Toeplitz lattice. We obtain the Lax and Zakharov-Shabat equations using the classical integrability theory tools. We explicitly derive the dynamical system associated with the coefficients of the orthogonal Laurent polynomials and we compare it with the classical Toeplitz lattice dynamical system for the Verblunsky coefficients of Szego polynomials for a positive measure. Discrete flows are introduced and related to Darboux transformations. Finally, we obtain the representation of the orthogonal Laurent polynomials (and their second kind functions), using the formalism of Miwa shifts in terms of tau-functions and the subsequent bilinear equations. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:132 / 193
页数:62
相关论文
共 70 条
[1]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (03) :598-603
[2]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS AND FOURIER-ANALYSIS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (06) :1011-1018
[3]  
Adler M, 2001, INT MATH RES NOTICES, V2001, P935
[4]  
Adler M, 2001, COMMUN PUR APPL MATH, V54, P153, DOI 10.1002/1097-0312(200102)54:2<153::AID-CPA2>3.0.CO
[5]  
2-5
[6]   The spectrum of coupled random matrices [J].
Adler, M ;
Van Moerbeke, P .
ANNALS OF MATHEMATICS, 1999, 149 (03) :921-976
[7]   Generalized orthogonal polynomials, discrete KP and Riemann-Hilbert problems [J].
Adler, M ;
van Moerbeke, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 207 (03) :589-620
[8]   Vertex operator solutions to the discrete KP-hierarchy [J].
Adler, M ;
van Moerbeke, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 203 (01) :185-210
[9]   Moment Matrices and Multi-Component KP, with Applications to Random Matrix Theory [J].
Adler, Mark ;
van Moerbeke, Pierre ;
Vanhaecke, Pol .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 286 (01) :1-38
[10]  
Alfaro M., 1982, ACT 3 JMHL SEV 1974, V2, P1