Entanglement entropy of Bell-network states in loop quantum gravity: Analytical and numerical results

被引:15
作者
Bianchi, Eugenio [1 ,2 ]
Dona, Pietro [1 ,2 ]
Vilensky, Ilya [3 ]
机构
[1] Penn State, Inst Gravitat & Cosmos, University Pk, PA 16802 USA
[2] Penn State, Dept Phys, University Pk, PA 16802 USA
[3] Florida Atlantic Univ, 777 Glades Rd, Boca Raton, FL 33431 USA
基金
美国国家科学基金会;
关键词
ASYMPTOTICS; SPACETIME;
D O I
10.1103/PhysRevD.99.086013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Bell-network states are loop-quantum-gravity states that glue quantum polyhedra with entanglement. We present an algorithm and a code that evaluates the reduced density matrix of a Bell-network state and computes its entanglement entropy. In particular, we use our code for simple graphs to study properties of Bell-network states and to show that they are nontypical in the Hilbert space. Moreover, we investigate analytically Bell-network states on arbitrary finite graphs. We develop methods to compute the Renyi entropy of order p for a restriction of the state to an arbitrary region. In the uniform large-spin regime, we determine bounds on the entanglement entropy and show that it obeys an area law. Finally, we discuss the implications of our results for correlations of geometric observables.
引用
收藏
页数:13
相关论文
共 65 条
[1]   LQG propagator: III. The new vertex [J].
Alesci, Emanuele ;
Bianchi, Eugenio ;
Rovelli, Carlo .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (21)
[2]  
[Anonymous], ARXIV160505356
[3]  
[Anonymous], 2007, MODERN CANONICAL QUA
[4]   Typicality in spin-network states of quantum geometry [J].
Anza, Fabio ;
Chirco, Goffredo .
PHYSICAL REVIEW D, 2016, 94 (08)
[5]   Background independent quantum giravity: a status report [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (15) :R53-R152
[6]  
Ashtekar A., 1998, Adv. Theor. Math. Phys., V1, P388, DOI 10.4310/ATMP.1997.v1.n2.a8
[7]  
Baez J. C., 1999, Adv. Theor. Math. Phys., V3, P815
[8]   Renormalization of symmetry restricted spin foam models with curvature in the asymptotic regime [J].
Bahr, Benjamin ;
Rabuffo, Giovanni ;
Steinhaus, Sebastian .
PHYSICAL REVIEW D, 2018, 98 (10)
[9]   Numerical Evidence for a Phase Transition in 4D Spin-Foam Quantum Gravity [J].
Bahr, Benjamin ;
Steinhaus, Sebastian .
PHYSICAL REVIEW LETTERS, 2016, 117 (14)
[10]   Quantum tetrahedra and simplicial spin networks [J].
Barbieri, A .
NUCLEAR PHYSICS B, 1998, 518 (03) :714-728