Modelling and multi-objective optimization for simulation of hydrogen production using a photosynthetic consortium

被引:5
|
作者
Hernandez-Melchor, Dulce J. [2 ]
Camacho-Perez, Beni [3 ]
Rios-Leal, Elvira [4 ]
Alarcon-Bonilla, Jesus [3 ]
Lopez-Perez, Pablo A. [1 ]
机构
[1] Univ Autonoma Estado Hidalgo, Escuela Super Apan, Carretera Apan Calpulalpan Km 8, Apan 43920, Hgo, Mexico
[2] Colegio Postgrad, Campus Montecillo, Texcoco 56230, Estado De Mexic, Mexico
[3] Univ Tecnol Tecamac, Quimicobiol A5, Carretera Fed Mexico Pachuca Km 37-5, Tecamac 55740, Estado De Mexic, Mexico
[4] CINVESTAV, IPN, Dept Biotecnol & Bioingn, Mexico City 2508, DF, Mexico
关键词
algae; consortia; cysteine; genetic algorithm; BIOHYDROGEN PRODUCTION; STATISTICAL OPTIMIZATION; MICROALGAE; FERMENTATION; ENERGY; CULTURES; NETWORK; GLUCOSE; GROWTH; OXYGEN;
D O I
10.1515/ijcre-2020-0019
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This study was aimed at finding the optimal conditions for hydrogen production based on statistical experiments and using a simulation approach. A Plackett-Burman design and steepest ascent were used to screen the key factors to obtain the best hydrogen concentration. According to the regression analysis, cysteine, acetate, and aeration had the best effect. The optimal conditions, using the method of steepest ascent, were aeration (0.125 L/min), acetate (200 mg/L), cysteine (498 mg/L). Once this was determined, an experiment with more than two factors was considered. The combinations: acetate + cysteine without aeration and cysteine without aeration increased hydrogen concentration. These last two criteria were used to validate the dynamic model based on unstructured kinetics. Biomass, nitrogen, acetate, and hydrogen concentrations were monitored. The proposed model was used to perform the multi-objective optimization for various desired combinations. The simultaneous optimization for a minimum ratio of cysteine-acetate improved the concentration of hydrogen to 20 mg/L. Biomass optimized the concentration of hydrogen to 11.5 mg/L. The simultaneous optimization of reaction time (RT) and cysteine improved hydrogen concentration to 28.19 mg/L. The experimental hydrogen production was 11.4 mg/L at 24 h under discontinuous operation. Finally, the proposed model and the optimization methodology calculated a higher hydrogen concentration than the experimental data.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Hybrid Multi-Objective Genetic Algorithm for Multi-Objective Optimization Problems
    Zhang, Song
    Wang, Hongfeng
    Yang, Di
    Huang, Min
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1970 - 1974
  • [32] Multi-objective optimization of hydrogen liquefaction process integrated with liquefied natural gas system
    Bae, Ju-Eon
    Wilailak, Supaporn
    Yang, Jae-Hyeon
    Yun, Dong-Yeol
    Zahid, Umer
    Lee, Chul-Jin
    ENERGY CONVERSION AND MANAGEMENT, 2021, 231
  • [33] A response surface modelling approach for multi-objective optimization of composite plates
    Kalita, Kanak
    Dey, Partha
    Joshi, Milan
    Halder, Salil
    STEEL AND COMPOSITE STRUCTURES, 2019, 32 (04) : 455 - 466
  • [34] Multi-Objective Optimization of Hybrid Renewable Energy System Using an Enhanced Multi-Objective Evolutionary Algorithm
    Ming, Mengjun
    Wang, Rui
    Zha, Yabing
    Zhang, Tao
    ENERGIES, 2017, 10 (05)
  • [35] Reverse electrodialysis: Modelling and performance analysis based on multi-objective optimization
    Long, Rui
    Li, Baode
    Liu, Zhichun
    Liu, Wei
    ENERGY, 2018, 151 : 1 - 10
  • [36] Multi-objective optimization of an industrial isoprene production unit by using genetic algorithm approach
    Alves, RMB
    Nascimento, CAO
    Loureiro, LV
    Floquet, P
    Joulia, X
    European Symposium on Computer-Aided Process Engineering-15, 20A and 20B, 2005, 20a-20b : 211 - 216
  • [37] Multi-objective optimization of a Concentrating Solar Power
    Mata-Torres, Carlos
    Palenzuela, Patricia
    Alarcon-Padilla, Diego-Cesar
    Zurita, Adriana
    Cardemil, Jose M.
    Escobar, Rodrigo A.
    ENERGY CONVERSION AND MANAGEMENT-X, 2021, 11
  • [38] Multi-objective Routing Optimization Using Evolutionary Algorithms
    Yetgin, Halil
    Cheung, Kent Tsz Kan
    Hanzo, Lajos
    2012 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2012, : 3030 - 3034
  • [39] Photosynthetic hydrogen production by alginate immobilized bacterial consortium
    Zhang, Huan
    Chen, Guanyi
    Zhang, Quanguo
    Lee, Duu-Jong
    Zhang, Zhiping
    Li, Yameng
    Li, Pengpeng
    Hu, Jianjun
    Yan, Beibei
    BIORESOURCE TECHNOLOGY, 2017, 236 : 44 - 48
  • [40] Assessment of mono and multi-objective optimization to design a hydrogen supply chain
    Almaraz, Sofia De-Leon
    Azzaro-Pantel, Catherine
    Montastruc, Ludovic
    Pibouleau, Luc
    Baez Senties, Oscar
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (33) : 14121 - 14145