Global existence and asymptotic convergence of weak solutions for the one-dimensional Navier-Stokes equations with capillarity and nonmonotonic pressure

被引:20
作者
Tsyganov, Eugene [1 ]
机构
[1] Indiana Univ, Bloomington, IN 47401 USA
关键词
Compressible Navier-Stokes equations; Capillarity Nonmonotonic pressure; Asymptotic behavior;
D O I
10.1016/j.jde.2008.01.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct global weak solution of the Navier-Stokes equations with capillarity and nonmonotonic pressure. The volume variable v(0) is initially assumed to be in H-1 and the velocity variable u(0) to be in L-2 on a finite interval [0, 1]. We show that both variables become smooth in positive time and that asymptotically in time u -> 0 strongly in L-2([0, 1]) and v approaches the set of stationary solutions in H-1 ([0, 1]). (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3936 / 3955
页数:20
相关论文
共 7 条
[1]   ASYMPTOTIC-BEHAVIOR AND CHANGES OF PHASE IN ONE-DIMENSIONAL NON-LINEAR VISCOELASTICITY [J].
ANDREWS, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1982, 44 (02) :306-341
[2]   STRUCTURED PHASE-TRANSITIONS ON A FINITE INTERVAL [J].
CARR, J ;
GURTIN, ME ;
SLEMROD, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1984, 86 (04) :317-351
[4]   Properties of steady states for thin film equations [J].
Laugesen, RS ;
Pugh, MC .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2000, 11 :293-351
[6]  
SCHAAF R, 1985, J REINE ANGEW MATH, V363, P96
[7]  
TSYGANOV E, Z ANGEW MATH PHYS, DOI DOI 10.1007/S0O033-007-4099-1