Pattern formation in the FitzHugh-Nagumo model

被引:45
作者
Zheng, Qianqian [1 ,2 ]
Shen, Jianwei [1 ]
机构
[1] Xuchang Univ, Inst Appl Math, Xuchang 461000, Henan, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450000, Peoples R China
基金
芬兰科学院; 中国国家自然科学基金;
关键词
Pattern formation; FitzHugh-Nagumo model; Turing-Hopf bifurcation; Amplitude equation; Secondary bifurcation; Stability analysis; NETWORK;
D O I
10.1016/j.camwa.2015.06.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the effect of diffusion on pattern formation in FitzHugh-Nagumo model. Through the linear stability analysis of local equilibrium we obtain the condition how the Turing bifurcation, Hopf bifurcation and the oscillatory instability boundaries arise. By using the method of the weak nonlinear multiple scales analysis and Taylor series expansion, we derive the amplitude equations of the stationary patterns. The analysis of amplitude equations shows the occurrence of different complex phenomena, including Turing instability Eckhaus instability and zigzag instability. In addition, we apply this analysis to FitzHugh-Nagumo model and find that this model has very rich dynamical behaviors, such as spotted, stripe and hexagon patterns. Finally, the numerical simulation shows that the analytical results agree with numerical simulation. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1082 / 1097
页数:16
相关论文
共 36 条
[1]   Symmetric bursting behaviors in the generalized FitzHugh-Nagumo model [J].
Abbasian, A. H. ;
Fallah, H. ;
Razvan, M. R. .
BIOLOGICAL CYBERNETICS, 2013, 107 (04) :465-476
[2]  
Angelis M.D., 2012, Quantitative Biology, V1202, P1
[3]  
[Anonymous], ABSTR APPL AN
[4]  
Asgari Y, 2011, IRAN J CHEM CHEM ENG, V30, P135
[5]   HOW WELL DOES TURINGS THEORY OF MORPHOGENESIS WORK [J].
BARD, J ;
LAUDER, I .
JOURNAL OF THEORETICAL BIOLOGY, 1974, 45 (02) :501-531
[6]   Acute reversal of phospholamban inhibition facilitates the rhythmic whole-cell propagating calcium waves in isolated ventricular myocytes [J].
Chan, Yi-Hsin ;
Tsai, Wei-Chung ;
Song, Zhen ;
Ko, Christopher Y. ;
Qu, Zhilin ;
Weiss, James N. ;
Lin, Shien-Fong ;
Chen, Peng-Sheng ;
Jones, Larry R. ;
Chen, Zhenhui .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2015, 80 :126-135
[7]   Attractor for a Reaction-Diffusion System Modeling Cancer Network [J].
Chen, Xueyong ;
Shen, Jianwei ;
Zhou, Hongxian .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[8]   Denoising feedback loops by thresholding - a new role for microRNAs [J].
Cohen, Stephen M. ;
Brennecke, Julius ;
Stark, Alexander .
GENES & DEVELOPMENT, 2006, 20 (20) :2769-2772
[9]  
Cross M., 2009, PATTERN FORMATION DY
[10]  
Dikansky A., 2005, DISCRETE CONT DYN-A, V2005, P216