Efficient Embedding Network for 3D Brain Tumor Segmentation

被引:5
作者
Messaoudi, Hicham [1 ]
Belaid, Ahror [1 ]
Allaoui, Mohamed Lamine [1 ]
Zetout, Ahcene [1 ]
Allili, Mohand Said [2 ]
Tliba, Souhil [1 ,3 ]
Ben Salem, Douraied [4 ,5 ]
Conze, Pierre-Henri [4 ,6 ]
机构
[1] Univ Abderrahmane Mira, Med Comp Lab LIMED, Bejaia 06000, Algeria
[2] Univ Quebec Outaouais, Gatineau, PQ J8X 3X7, Canada
[3] Univ Hosp Ctr, Biol Engn Canc, Neurosurg Dept, Bejaia 06000, Algeria
[4] Univ Brest, Lab Med Informat Proc LaTIM, UMR 1101, Inserm, 22 Ave Camille Desmoulins, F-29238 Brest, France
[5] CHRU Brest, Dept Neuroradiol, Blvd Tanguy Prigent, F-29609 Brest, France
[6] Technopole Brest Iroise, IMT Atlantique, F-29238 Brest, France
来源
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I | 2021年 / 12658卷
关键词
Convolutional encoder-decoders; Embedding networks; Transfer learning; 3D image segmentation; EfficientNet;
D O I
10.1007/978-3-030-72084-1_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D medical image processing with deep learning greatly suffers from a lack of data. Thus, studies carried out in this field are limited compared to works related to 2D natural image analysis, where very large datasets exist. As a result, powerful and efficient 2D convolutional neural networks have been developed and trained. In this paper, we investigate a way to transfer the performance of a two-dimensional classification network for the purpose of three-dimensional semantic segmentation of brain tumors. We propose an asymmetric U-Net network by incorporating the EfficientNet model as part of the encoding branch. As the input data is in 3D, the first layers of the encoder are devoted to the reduction of the third dimension in order to fit the input of the EfficientNet network. Experimental results on validation and test data from the BraTS 2020 challenge demonstrate that the proposed method achieve promising performance.
引用
收藏
页码:252 / 262
页数:11
相关论文
共 15 条
[1]  
Bakas S, 2019, Arxiv, DOI [arXiv:1811.02629, DOI 10.48550/ARXIV.1811.02629]
[2]  
Bakas Spyridon, 2017, TCIA
[3]  
Bakas Spyridon, 2017, TCIA
[4]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[5]   A survey of MRI-based medical image analysis for brain tumor studies [J].
Bauer, Stefan ;
Wiest, Roland ;
Nolte, Lutz-P ;
Reyes, Mauricio .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (13) :R97-R129
[6]  
Conze P. H., 2020, arXiv
[7]   Healthy versus pathological learning transferability in shoulder muscle MRI segmentation using deep convolutional encoder-decoders [J].
Conze, Pierre-Henri ;
Brochard, Sylvain ;
Burdin, Valerie ;
Sheehan, Frances T. ;
Pons, Christelle .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2020, 83
[8]   The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) [J].
Menze, Bjoern H. ;
Jakab, Andras ;
Bauer, Stefan ;
Kalpathy-Cramer, Jayashree ;
Farahani, Keyvan ;
Kirby, Justin ;
Burren, Yuliya ;
Porz, Nicole ;
Slotboom, Johannes ;
Wiest, Roland ;
Lanczi, Levente ;
Gerstner, Elizabeth ;
Weber, Marc-Andre ;
Arbel, Tal ;
Avants, Brian B. ;
Ayache, Nicholas ;
Buendia, Patricia ;
Collins, D. Louis ;
Cordier, Nicolas ;
Corso, Jason J. ;
Criminisi, Antonio ;
Das, Tilak ;
Delingette, Herve ;
Demiralp, Cagatay ;
Durst, Christopher R. ;
Dojat, Michel ;
Doyle, Senan ;
Festa, Joana ;
Forbes, Florence ;
Geremia, Ezequiel ;
Glocker, Ben ;
Golland, Polina ;
Guo, Xiaotao ;
Hamamci, Andac ;
Iftekharuddin, Khan M. ;
Jena, Raj ;
John, Nigel M. ;
Konukoglu, Ender ;
Lashkari, Danial ;
Mariz, Jose Antonio ;
Meier, Raphael ;
Pereira, Sergio ;
Precup, Doina ;
Price, Stephen J. ;
Raviv, Tammy Riklin ;
Reza, Syed M. S. ;
Ryan, Michael ;
Sarikaya, Duygu ;
Schwartz, Lawrence ;
Shin, Hoo-Chang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (10) :1993-2024
[9]   3D MRI Brain Tumor Segmentation Using Autoencoder Regularization [J].
Myronenko, Andriy .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 :311-320
[10]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241