Foreground Object Detection in Visual Surveillance With Spatio-Temporal Fusion Network

被引:0
作者
Kim, Jae-Yeul [1 ]
Ha, Jong-Eun [2 ]
机构
[1] Daegu Gyeongbuk Inst Sci & Technol DGIST, Grad Sch Elect Engn & Comp Sci, Daegu 42988, South Korea
[2] Seoul Natl Univ Sci & Technol, Dept Mech & Automot Engn, Seoul 01811, South Korea
基金
新加坡国家研究基金会;
关键词
Visual surveillance; deep learning; foreground object detection; spatio-temporal information; BACKGROUND SUBTRACTION;
D O I
10.1109/ACCESS.2022.3224063
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Object detection generally shows promising results only using spatial information, but foreground object detection in visual surveillance requires proper use of temporal information in addition to spatial information. Recently, deep learning-based visual surveillance algorithms have shown improved results, in an environment similar to training one, compared to traditional background subtraction (BGS) algorithms. However, in unseen environments, they show poor performance compared to BGS algorithms. This paper proposes an algorithm that improves performance in unseen environments by integrating spatial and temporal information. We propose a spatio-temporal fusion network (STFN) that extracts temporal and spatial information from 3D and 2D networks. Also, we propose a method for stable training of the proposed STFN using a semi-foreground map. STFN can generate a compliant background model image and operate in real-time on a desktop with GPU. The proposed algorithm performs well in an environment different from training and is demonstrated by experiments using various public datasets.
引用
收藏
页码:122857 / 122869
页数:13
相关论文
共 49 条
[1]   A 3D CNN-LSTM-Based Image-to-Image Foreground Segmentation [J].
Akilan, Thangarajah ;
Wu, Qingming Jonathan ;
Safaei, Amin ;
Huo, Jie ;
Yang, Yimin .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (03) :959-971
[2]  
[Anonymous], 2013, 9 WORKSHOP VISAO COM
[3]   A deep convolutional neural network for video sequence background subtraction [J].
Babaee, Mohammadreza ;
Duc Tung Dinh ;
Rigoll, Gerhard .
PATTERN RECOGNITION, 2018, 76 :635-649
[4]   ViBe: A Universal Background Subtraction Algorithm for Video Sequences [J].
Barnich, Olivier ;
Van Droogenbroeck, Marc .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (06) :1709-1724
[5]   Real-time nonparametric background subtraction with tracking-based foreground update [J].
Berjon, Daniel ;
Cuevas, Carlos ;
Moran, Francisco ;
Garcia, Narciso .
PATTERN RECOGNITION, 2018, 74 :156-170
[6]   Change Detection in Feature Space using Local Binary Similarity Patterns [J].
Bilodeau, Guillaume-Alexandre ;
Jodoin, Jean-Philippe ;
Saunier, Nicolas .
2013 INTERNATIONAL CONFERENCE ON COMPUTER AND ROBOT VISION (CRV), 2013, :106-112
[7]  
Braham M, 2016, INT CONF SYST SIGNAL, P113
[8]   Labeled dataset for integral evaluation of moving object detection algorithms: LASIESTA [J].
Cuevas, Carlos ;
Maria Yanez, Eva ;
Garcia, Narciso .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2016, 152 :103-117
[9]   Background and foreground modeling using nonparametric kernel density estimation for visual surveillance [J].
Elgammal, A ;
Duraiswami, R ;
Harwood, D ;
Davis, LS .
PROCEEDINGS OF THE IEEE, 2002, 90 (07) :1151-1163
[10]   Rapid and Robust Background Modeling Technique for Low-Cost Road Traffic Surveillance Systems [J].
Garg, Kratika ;
Ramakrishnan, Nirmala ;
Prakash, Alok ;
Srikanthan, Thambipillai .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (05) :2204-2215