KV4.3 Expression Modulates NaV1.5 Sodium Current

被引:27
作者
Portero, Vincent [1 ]
Wilders, Ronald [2 ]
Casini, Simona [1 ]
Charpentier, Flavien [3 ]
Verkerk, Arie O. [1 ,2 ]
Remme, Carol Ann [1 ]
机构
[1] Acad Med Ctr, Dept Expt Cardiol, Amsterdam, Netherlands
[2] Acad Med Ctr, Dept Med Biol, Amsterdam, Netherlands
[3] Univ Nantes, CNRS, INSERM, Inst Thorax, Nantes, France
关键词
transient outward current; sodium current; channels; action potential; myocyte; arrhythmias; computer simulation; STRUCTURAL HEART-DISEASE; BRUGADA-SYNDROME; CARDIAC CONDUCTION; ANKYRIN G; MUTATIONS; PROPAGATION; MECHANISM; MODEL; EXCITABILITY; CHANNELS;
D O I
10.3389/fphys.2018.00178
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
In cardiomyocytes, the voltage-gated transient outward potassium current (I-to) is responsible for the phase-1 repolarization of the action potential (AP). Gain-of-function mutations in KCND3, the gene encoding the Ito carrying K(V)4.3 channel, have been associated with Brugada syndrome (BrS). While the role of I-to in the pro-arrhythmic mechanism of BrS has been debated, recent studies have suggested that an increased Ito may directly affect cardiac conduction. However, the effects of an increased I-to on AP upstroke velocity or sodium current at the cellular level remain unknown. We here investigated the consequences of K(V)4.3 overexpression on Na(V)1.5 current and consequent sodium channel availability. We found that overexpression of K(V)4.3 protein in HEK293 cells stably expressing Na(V)1.5 (HEK293-Na(V)1.5 cells) significantly reduced Na(V)1.5 current density without affecting its kinetic properties. In addition, K(V)4.3 overexpression decreased AP upstroke velocity in HEK293-Na(V)1.5 cells, as measured with the alternating voltage/current clamp technique. These effects of K(V)4.3 could not be explained by alterations in total Na(V)1.5 protein expression. Using computer simulations employing amulticellular insilico model, we furthermore demonstrate that the experimentally observed increase in K(V)4.3 current and concurrent decrease in Na(V)1.5 current may result in a loss of conduction, underlining the potential functional relevance of our findings. This study gives the first proof of concept that K(V)4.3 directly impacts on Na(V)1.5 current. Future studies employing appropriate diseasemodels should explore the potential electrophysiological implications in (patho) physiological conditions, including BrS associated with KCND3 gain-of-function mutations.
引用
收藏
页数:13
相关论文
共 48 条
[1]   Super-resolution imaging reveals that loss of the C-terminus of connexin43 limits microtubule plus-end capture and NaV1.5 localization at the intercalated disc [J].
Agullo-Pascual, Esperanza ;
Lin, Xianming ;
Leo-Macias, Alejandra ;
Zhang, Mingliang ;
Liang, Feng-Xia ;
Li, Zhen ;
Pfenniger, Anna ;
Luebkemeier, Indra ;
Keegan, Sarah ;
Fenyoe, David ;
Willecke, Klaus ;
Rothenberg, Eli ;
Delmar, Mario .
CARDIOVASCULAR RESEARCH, 2014, 104 (02) :371-381
[2]   Ion Channel Trafficking: Control of Ion Channel Density as a Target for Arrhythmias? [J].
Balse, Elise ;
Boycott, Hannah E. .
FRONTIERS IN PHYSIOLOGY, 2017, 8
[3]   LIQUID JUNCTION POTENTIALS AND SMALL-CELL EFFECTS IN PATCH-CLAMP ANALYSIS [J].
BARRY, PH ;
LYNCH, JW .
JOURNAL OF MEMBRANE BIOLOGY, 1991, 121 (02) :101-117
[4]   Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A) [J].
Benson, DW ;
Wang, DW ;
Dyment, M ;
Knilans, TK ;
Fish, FA ;
Strieper, MJ ;
Rhodes, TH ;
George, AL .
JOURNAL OF CLINICAL INVESTIGATION, 2003, 112 (07) :1019-1028
[5]   Re-Evaluation of the Action Potential Upstroke Velocity as a Measure of the Na+ Current in Cardiac Myocytes at Physiological Conditions [J].
Berecki, Geza ;
Wilders, Ronald ;
de Jonge, Berend ;
van Ginneken, Antoni C. G. ;
Verkerk, Arie O. .
PLOS ONE, 2010, 5 (12)
[6]   Computer model of action potential of mouse ventricular myocytes [J].
Bondarenko, VE ;
Szigeti, GP ;
Bett, GCL ;
Kim, SJ ;
Rasmusson, RL .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2004, 287 (03) :H1378-H1403
[7]   Ankyrin G restricts ion channel diffusion at the axonal initial segment before the establishment of the diffusion barrier [J].
Brachet, Anna ;
Leterrier, Christophe ;
Irondelle, Marie ;
Fache, Marie-Pierre ;
Racine, Victor ;
Sibarita, Jean-Baptiste ;
Choquet, Daniel ;
Dargent, Benedicte .
JOURNAL OF CELL BIOLOGY, 2010, 191 (02) :383-395
[8]   Intracellular calcium modulation of voltage-gated sodium channels in ventricular myocytes [J].
Casini, Simona ;
Verkerk, Arie O. ;
van Borren, Marcel M. G. J. ;
van Ginneken, Antoni C. G. ;
Veldkamp, Marieke W. ;
de Bakker, Jacques M. T. ;
Tan, Hanno L. .
CARDIOVASCULAR RESEARCH, 2009, 81 (01) :72-81
[9]   Genetic basis and molecular mechanism for idiopathic: ventricular fibrillation [J].
Chen, QY ;
Kirsch, GE ;
Zhang, DM ;
Brugada, R ;
Brugada, J ;
Brugada, P ;
Potenza, D ;
Moya, A ;
Borggrefe, M ;
Breithardt, G ;
Ortiz-Lopez, R ;
Wang, Z ;
Antzelevitch, C ;
O'Brien, RE ;
Schulze-Bahr, E ;
Keating, MT ;
Towbin, JA ;
Wang, Q .
NATURE, 1998, 392 (6673) :293-296
[10]   Right ventricular fibrosis and conduction delay in a patient with clinical signs of Brugada syndrome - A combined electrophysiological, genetic, histopathologic, and computational study [J].
Coronel, R ;
Casini, S ;
Koopmann, TT ;
Wilms-Schopman, FJG ;
Verkerk, AO ;
de Groot, JR ;
Bhuiyan, Z ;
Bezzina, CR ;
Veldkamp, MW ;
Linnenbank, AC ;
van der Wal, AC ;
Tan, HL ;
Brugada, P ;
Wilde, AAM ;
de Bakker, JMT .
CIRCULATION, 2005, 112 (18) :2769-2777