Thermal conductivity of nanowires

被引:34
作者
Zhang, Zhongwei [1 ,2 ,3 ,4 ]
Chen, Jie [1 ,2 ,3 ,4 ]
机构
[1] Tongji Univ, Sch Phys Sci & Engn, Ctr Phonon & Thermal Energy Sci, Shanghai 200092, Peoples R China
[2] Tongji Univ, Inst Adv Study, Shanghai 200092, Peoples R China
[3] Tongji Univ, Sch Phys Sci & Engn, China EU Joint Lab Nanophonon, Shanghai 200092, Peoples R China
[4] Tongji Univ, Shanghai Key Lab Special Artificial Microstruct M, Sch Phys Sci & Engn, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
thermal conductivity; nanowires; thermal management; thermoelectrics; CORE-SHELL NANOWIRES; THIN SILICON NANOWIRES; ENHANCED THERMOELECTRIC PROPERTIES; FEW-LAYER GRAPHENE; SI NANOWIRES; SUPERLATTICE NANOWIRES; CORE/SHELL NANOWIRES; TRANSPORT-PROPERTIES; KAPITZA RESISTANCE; MOLECULAR-DYNAMICS;
D O I
10.1088/1674-1056/27/3/035101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Thermal conductivity of nanowires (NWs) is a crucial criterion to assess the operating performance of NWs-based device applications, such as in the field of heat dissipation, thermal management, and thermoelectrics. Therefore, numerous research interests have been focused on controlling and manipulating thermal conductivity of one-dimensional materials in the past decade. In this review, we summarize the state-of-the-art research status on thermal conductivity of NWs from both experimental and theoretical studies. Various NWs are included, such as Si, Ge, Bi, Ti, Cu, Ag, Bi2Te3, ZnO, AgTe, and their hybrids. First, several important size effects on thermal conductivity of NWs are discussed, such as the length, diameter, orientation, and cross-section. Then, we introduce diverse nanostructuring pathways to control the phonons and thermal transport in NWs, such as alloy, superlattices, core-shell structure, porous structure, resonant structure, and kinked structure. Distinct thermal transport behaviors and the associated underlying physical mechanisms are presented. Finally, we outline the important potential applications of NWs in the fields of thermoelectrics and thermal management, and provide an outlook.
引用
收藏
页数:13
相关论文
共 138 条
[1]   Optical Properties of Crystalline-Amorphous Core-Shell Silicon Nanowires [J].
Adachi, M. M. ;
Anantram, M. P. ;
Karim, K. S. .
NANO LETTERS, 2010, 10 (10) :4093-4098
[2]   Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes [J].
Aksamija, Z. ;
Knezevic, I. .
PHYSICAL REVIEW B, 2010, 82 (04)
[3]   Kapitza Resistance between Few-Layer Graphene and Water: Liquid Layering Effects [J].
Alexeev, Dmitry ;
Chen, Jie ;
Walther, Jens H. ;
Giapis, Konstantinos P. ;
Angelikopoulos, Panagiotis ;
Koumoutsakos, Petros .
NANO LETTERS, 2015, 15 (09) :5744-5749
[4]  
[Anonymous], 2016, NANOTECHNOLOGY, DOI DOI 10.1088/0957-4484/27/44/445703
[5]   Phonon heat conduction in corrugated silicon nanowires below the Casimir limit [J].
Blanc, Christophe ;
Rajabpour, Ali ;
Volz, Sebastian ;
Fournier, Thierry ;
Bourgeois, Olivier .
APPLIED PHYSICS LETTERS, 2013, 103 (04)
[6]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[7]   Diameter-Dependent Thermal Transport in Individual ZnO Nanowires and its Correlation with Surface Coating and Defects [J].
Bui, Cong Tinh ;
Xie, Rongguo ;
Zheng, Minrui ;
Zhang, Qingxin ;
Sow, Chorng Haur ;
Li, Baowen ;
Thong, John T. L. .
SMALL, 2012, 8 (05) :738-745
[8]   Surface roughness and thermal conductivity of semiconductor nanowires: Going below the Casimir limit [J].
Carrete, J. ;
Gallego, L. J. ;
Varela, L. M. ;
Mingo, N. .
PHYSICAL REVIEW B, 2011, 84 (07)
[9]   Thermal transport in porous Si nanowires from approach-to-equilibrium molecular dynamics calculations [J].
Cartoixa, Xavier ;
Dettori, Riccardo ;
Melis, Claudio ;
Colombo, Luciano ;
Rurali, Riccardo .
APPLIED PHYSICS LETTERS, 2016, 109 (01)
[10]   Thermal Rectification by Design in Telescopic Si Nanowires [J].
Cartoixa, Xavier ;
Colombo, Luciano ;
Rurali, Riccardo .
NANO LETTERS, 2015, 15 (12) :8255-8259