Variational discretization for parabolic optimal control problems with control constraints

被引:9
作者
Tang, Yuelong [2 ]
Chen, Yanping [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
基金
美国国家科学基金会;
关键词
A posteriori error estimates; a priori error estimates; optimal control problems; parabolic equations; variational discretization; MIXED FINITE-ELEMENT; RECOVERY TYPE; SUPERCONVERGENCE; EQUATIONS;
D O I
10.1007/s11424-012-0279-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies variational discretization for the optimal control problem governed by parabolic equations with control constraints. First of all, the authors derive a priori error estimates where . It is much better than a priori error estimates of standard finite element and backward Euler method where . Secondly, the authors obtain a posteriori error estimates of residual type. Finally, the authors present some numerical algorithms for the optimal control problem and do some numerical experiments to illustrate their theoretical results.
引用
收藏
页码:880 / 895
页数:16
相关论文
共 18 条
[1]  
[Anonymous], 1971, OPTIMAL CONTROL SYST
[2]   A posteriori error estimates for mixed finite element solutions of convex optimal control problems [J].
Chen, Yanping ;
Liu, Wenbin .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 211 (01) :76-89
[3]  
Chen YP, 2006, INT J NUMER ANAL MOD, V3, P311
[4]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[5]   A variational discretization concept in control constrained optimization: The linear-quadratic case [J].
Hinze, M .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2005, 30 (01) :45-61
[6]  
Hinze M, 2009, J COMPUT MATH, V27, P237
[7]  
Huang M., 2004, NUMERICAL METHODS EV
[8]  
Kufner A., 1997, Function Spaces
[9]   Adaptive finite element approximation for distributed elliptic optimal control problems [J].
Li, R ;
Liu, WB ;
Ma, HP ;
Tang, T .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 41 (05) :1321-1349
[10]   A posteriori error estimates of recovery type for distributed convex optimal control problems [J].
Li, Ruo ;
Liu, Wenbin ;
Yan, Ningning .
JOURNAL OF SCIENTIFIC COMPUTING, 2007, 33 (02) :155-182