Star Formation with Adaptive Mesh Refinement Radiation Hydrodynamics

被引:1
|
作者
Krumholz, Mark R. [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA
来源
COMPUTATIONAL STAR FORMATION | 2011年 / 270期
关键词
hydrodynamics; methods: numerical; radiative transfer; stars: formation; FLUX-LIMITED DIFFUSION; INITIAL MASS FUNCTION; PROTOSTELLAR COLLAPSE; MOLECULAR CLOUDS; FRAGMENTATION; EVOLUTION; FEEDBACK; ACCRETION; TRANSPORT; CORES;
D O I
10.1017/S1743921311000354
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
I provide a pedagogic review of adaptive mesh refinement (AMR) radiation hydrodynamics (RHD) methods and codes used in simulations of star formation, at a level suitable for researchers who are not computational experts. I begin with a brief overview of the types of RHD processes that are most important to star formation, and then I formally introduce the equations of RHD and the approximations one uses to render them computationally tractable. I discuss strategies for solving these approximate equations on adaptive grids, with particular emphasis on identifying the main advantages and disadvantages of various approximations and numerical approaches. Finally, I conclude by discussing areas ripe for improvement.
引用
收藏
页码:187 / 194
页数:8
相关论文
共 50 条
  • [21] Physics and modes of star cluster formation
    Bate, Matthew R.
    STAR CLUSTERS: BASIC GALACTIC BUILDING BLOCKS THROUGHOUT TIME AND SPACE, 2010, (266): : 29 - 34
  • [22] RADAMESH: cosmological radiative transfer for Adaptive Mesh Refinement simulations
    Cantalupo, Sebastiano
    Porciani, Cristiano
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 411 (03) : 1678 - 1694
  • [23] Astrophysical hydrodynamics with a high-order discontinuous Galerkin scheme and adaptive mesh refinement
    Schaal, Kevin
    Bauer, Andreas
    Chandrashekar, Praveen
    Pakmor, Ruediger
    Klingenberg, Christian
    Springel, Volker
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 453 (04) : 4278 - 4300
  • [24] Star Formation in a Turbulent Cloud Core with Self-gravitational MHD Adaptive Mesh Refinement
    Matsumoto, Tomoaki
    NUMERICAL MODELING OF SPACE PLASMA FLOWS ASTRONUM-2009, 2010, 429 : 22 - 27
  • [25] The physics and modes of star cluster formation: simulations
    Clarke, Cathie
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1913): : 733 - 754
  • [26] Adaptive particle refinement for compressible smoothed particle hydrodynamics
    Nealon, Rebecca
    Price, Daniel J.
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, 2025, 42
  • [27] Hybrid characteristics: 3D radiative transfer for parallel adaptive mesh refinement hydrodynamics
    Rijkhorst, E. -J.
    Plewa, T.
    Dubey, A.
    Mellema, G.
    ASTRONOMY & ASTROPHYSICS, 2006, 452 (03) : 907 - 920
  • [28] Tree-based solvers for adaptive mesh refinement code FLASH - III: a novel scheme for radiation pressure on dust and gas and radiative transfer from diffuse sources
    Klepitko, A.
    Walch, S.
    Wuensch, R.
    Seifried, D.
    Dinnbier, F.
    Haid, S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 521 (01) : 160 - 184
  • [29] AREPO-RT: radiation hydrodynamics on a moving mesh
    Kannan, Rahul
    Vogelsberger, Mark
    Marinacci, Federico
    McKinnon, Ryan
    Pakmor, Ruediger
    Springel, Volker
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 485 (01) : 117 - 149
  • [30] An Implicit Scheme for Ohmic Dissipation with Adaptive Mesh Refinement
    Matsumoto, Tomoaki
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 2011, 63 (02) : 317 - 323