The escape trichotomy for singularly perturbed rational maps

被引:89
作者
Devaney, RL
Look, DM
Uminsky, D
机构
[1] Boston Univ, Dept Math, Boston, MA 02215 USA
[2] Indiana Univ Penn, Dept Math, Indiana, PA 15705 USA
关键词
Julia set; rational map; escape trichotomy; McMullen domain; Sierpinski curve;
D O I
10.1512/iumj.2005.54.2615
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the dynamical behavior of the family of complex rational maps given by F-lambda (z) = z(n) + lambda/z(d) where n >= 2, d >= 1. Despite the high degree of these maps, there is only one free critical orbit up to symmetry. Also, the point at infinity is always a superattracting fixed point. Our goal is to consider what happens when the free critical orbit tends to infinity. We show that there are three very different types of Julia sets that occur in this case. Suppose the free critical orbit enters the immediate basin of attraction of infinity at iteration j. Then we show: (1) If j = 1, the Julia set is a Cantor set; (2) If j = 2, the Julia set is a Cantor set of simple closed curves; (3) If j > 2, the Julia set is a Sterpinski curve.
引用
收藏
页码:1621 / 1634
页数:14
相关论文
共 19 条
  • [1] [Anonymous], NOTICES AM MATH SOC
  • [2] Sierpinski-curve Julia sets and singular perturbations of complex polynomials
    Blanchard, P
    Devaney, RL
    Look, DM
    Seal, P
    Shapiro, Y
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 : 1047 - 1055
  • [3] The limitation of easily connectable regions
    Caratheodory, C
    [J]. MATHEMATISCHE ANNALEN, 1913, 73 : 323 - 370
  • [4] Devaney R. L., 2005, MCMULLEN DOMAIN RING
  • [5] Singular perturbations of quadratic maps
    Devaney, RL
    Josic, K
    Shapiro, Y
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (01): : 161 - 169
  • [6] DEVANEY RL, IN PRESS TOPOLOGY P
  • [7] DOUADY A, 1982, CR ACAD SCI I-MATH, V294, P123
  • [8] Kuratowski K., 1968, TOPOLOGY, VII
  • [9] MCMULLEN C, 1988, HOLOMORPHIC FUNCTION, V0001, P00031
  • [10] MCMULLEN C., 1986, HOLOMORPHIC FUNCTION, V10, P31, DOI [10.1007/978-1-4613-9602-4_3, DOI 10.1007/978-1-4613-9602-4_3]