Point Estimate Method Addressing Correlated Wind Power for Probabilistic Optimal Power Flow

被引:119
作者
Saunders, Christopher Scott [1 ]
机构
[1] Brunel Univ, Brunel Inst Power Syst, Uxbridge UB8 3PH, Middx, England
关键词
Point estimate method; probabilistic optimal power flow; uncertainty; wind power; LOAD-FLOW; GENERATION; SYSTEMS;
D O I
10.1109/TPWRS.2013.2288701
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Increasing levels of wind power integration pose a challenge in system operation, owing to the uncertainty and non-dispatchability of wind generation. The probabilistic nature of wind speed inputs dictates that in an optimization of the system, all output variables will themselves be probabilistic. In order to determine the distributions resulting from system optimization, a probabilistic optimal power flow (POPF) method may be applied. While Monte Carlo (MC) techniques are a traditional approach, recent research into point estimate methods (PEMs) has displayed their capabilities to obtain output distributions while reducing computational burden. Unfortunately both spatial and temporal correlation amongst the input wind speed random variables complicates the application of PEM for solving the POPF. Further complications may arise due to the large number of random input variables present when performing a multi-period POPF. In this paper, a solution is proposed which addresses the correlation amongst input random variables, as well as an input variable truncation approach for addressing the large number of random input variables, such that a PEM can be effectively used to obtain POPF output distributions.
引用
收藏
页码:1045 / 1054
页数:10
相关论文
共 35 条
[11]   Multi-area coordinated decentralized DC optimal power flow [J].
Conejo, AJ ;
Aguado, JA .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1998, 13 (04) :1272-1278
[12]   THE TIME-SERIES APPROACH TO SHORT-TERM LOAD FORECASTING [J].
HAGAN, MT ;
BEHR, SM .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1987, 2 (03) :785-791
[13]   PROBABILISTIC ESTIMATES FOR MULTIVARIATE ANALYSES [J].
HARR, ME .
APPLIED MATHEMATICAL MODELLING, 1989, 13 (05) :313-318
[14]   An efficient point estimate method for probabilistic analysis [J].
Hong, HP .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 1998, 59 (03) :261-267
[15]   Probabilistic short-term wind power forecasting for the optimal management of wind generation [J].
Juban, Jeremie ;
Siebert, Nils ;
Kariniotakis, George N. .
2007 IEEE LAUSANNE POWERTECH, VOLS 1-5, 2007, :683-688
[16]  
Leon-Garcia A., 1994, PROBABILITY RANDOM P, V2
[17]   ANALYSIS AND EVALUATION OF 5 SHORT-TERM LOAD FORECASTING TECHNIQUES [J].
MOGHRAM, I ;
RAHMAN, S .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1989, 4 (04) :1484-1491
[18]   Probabilistic power flow with correlated wind sources [J].
Morales, J. M. ;
Baringo, L. ;
Conejo, A. J. ;
Minguez, R. .
IET GENERATION TRANSMISSION & DISTRIBUTION, 2010, 4 (05) :641-651
[19]   Point estimate schemes to solve the probabilistic power flow [J].
Morales, Juan. M. ;
Perez-Ruiz, Juan. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2007, 22 (04) :1594-1601
[20]  
Norgaard P., 2004, P NORD WIND POW C MA