Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system

被引:795
作者
Winkler, Michael [1 ]
机构
[1] Univ Paderborn, Inst Math, D-33098 Paderborn, Germany
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2013年 / 100卷 / 05期
关键词
Chemotaxis; Finite-time blow-up; A priori estimates; CHEMOTAXIS MODEL; AGGREGATION; DIFFUSION; BOUNDEDNESS; BEHAVIOR;
D O I
10.1016/j.matpur.2013.01.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Neumann initial boundary value problem for the fully parabolic Keller Segel system [GRAPHICS] , where Omega is a ball in R-n with n >= 3. It is proved that for any prescribed m > 0 there exist radially symmetric positive initial data (u(0), v(0)) is an element of C-0((Omega) over bar) x W-l,W- (infinity)(Omega) with integral(Omega) u(o) = m such that the corresponding solution blows up in finite time. Moreover, by providing an essentially explicit blow-up criterion it is shown that within the space of all radial functions, the set of such blow-up enforcing initial data indeed is laige in an appropriate sense; in particular, this set is dense with respect to the topology of L-P (Omega) x W-1,W- 2n(Omega) for any p is an element of (1, 2n/n+2). (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:748 / 767
页数:20
相关论文
共 38 条
[1]  
Biler P., 1999, ADV MATH SCI APPL, V9, P347
[2]   Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis [J].
Biler, Piotr ;
Corrias, Lucilla ;
Dolbeault, Jean .
JOURNAL OF MATHEMATICAL BIOLOGY, 2011, 63 (01) :1-32
[3]   Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions [J].
Blanchet, Adrien ;
Carrillo, Jose A. ;
Laurencot, Philippe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 35 (02) :133-168
[4]   Volume effects in the Keller-Segel model: energy estimates preventing blow-up [J].
Calvez, Vincent ;
Carrillo, Jose A. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (02) :155-175
[5]   Finite-time blow-up in a quasilinear system of chemotaxis [J].
Cieslak, Tomasz ;
Winkler, Michael .
NONLINEARITY, 2008, 21 (05) :1057-1076
[6]   Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system [J].
Cieslak, Tomasz ;
Laurencot, Philippe .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (01) :437-446
[7]   LOOKING FOR CRITICAL NONLINEARITY IN THE ONE-DIMENSIONAL QUASILINEAR SMOLUCHOWSKI-POISSON SYSTEM [J].
Cieslak, Tomasz ;
Laurencot, Philippe .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 26 (02) :417-430
[8]   Finite time blow-up for radially symmetric solutions to a critical quasilinear Smoluchowski-Poisson system [J].
Cieslak, Tomasz ;
Laurencot, Philippe .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (5-6) :237-242
[9]   Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces [J].
Corrias, Lucilla ;
Perthame, Benoit .
MATHEMATICAL AND COMPUTER MODELLING, 2008, 47 (7-8) :755-764
[10]  
Friedman A., 1969, Partial Differential Equations